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Abstract—In this work we probe the impact of channel
estimation on the performance of quantum LDPC codes. Our
channel estimation is based on an optimal estimate of the relevant
decoherence parameter via its quantum Fisher information.
Using state-of-the art quantum LDPC codes designed for the
quantum depolarization channel, and utilizing various quantum
probes with different entanglement properties, we show how
the performance of such codes can deteriorate by an order
of magnitude when optimal channel identification is fed into a
belief propagation decoding algorithm. Our work highlights the
importance in quantum communications of a viable channel iden-
tification campaign prior to decoding, and highlights the trade-
off between entanglement consumption and quantum LDPC code
performance.

I. INTRODUCTION

A quantum error correction code (QECC) is intended to pro-
tect fragile quantum states from unwanted evolution and allow
for robust implementations of quantum processing devices.
Compared to classical communication systems, error correc-
tion in quantum communication channels is challenging, since
a quantum bit, namely a qubit, has continuous states rather
than two discrete states. Implementation of practical encoders
and decoders in quantum codes is further complicated by the
fact that a quantum state is usually affected by measurement,
and that an unknown quantum state cannot be duplicated.

For classical error correction, it is well known that practical
decodable codes exist. When an optimal decoder is applied,
classical codes can achieve information rates close to the
Shannon limit. Low-density parity-check (LDPC) codes [1] [2]
are an example of such codes. The sparseness of the parity-
check matrices makes the codes easy to encode and decode,
even when communicating very close to the Shannon limit. It
is established that the sum-product message passing algorithm
is an optimal decoding algorithm for LDPC codes provided
that the factor graph of LDPC codes is a tree structure, i.e. no
cycles exist.

Following the discovery of CSS (Calderbank, Shor and
Steane) codes [3] [4] and stabilizer codes [5], it has been
known how quantum error-correction codes can be developed
in a similar manner to classical codes. Quantum LDPC codes
based on finite geometry were first proposed in [6]. However,
a key constraint on the matrix representing the stabilizers
(arising from commutativity requirements) makes the design of
quantum LDPC codes difficult. In [7], Mackay et al. proposed

the bicycle codes and explored the conjecture that the best
quantum error-correcting codes will be closely related to the
best classical codes, and in [8] Poulin et al. proposed serial
turbo codes for quantum error correction. A more detailed his-
tory on the development of QECC can be found elsewhere e.g.
[9], [10]. More recently, many works attempting to improve
quantum LDPC code performance have been published, and
in this regard the recent codes of [11], [12], and [13] based
on quasi-cyclic structure can be considered as representative
of state-of-the-art quantum LDPC codes.

Hitherto, in investigations of the performance of quantum
LDPC codes it has been assumed that perfect knowledge of the
quantum channel exists. Of course in practice this is not the
case. In this work we probe the impact of imperfect channel
knowledge on the performance of quantum LDPC codes. We
will utilize optimal estimates of the channel derived from
quantum Fisher information about the channel parameters.
More specifically, we will investigate the performance of
quantum codes over the depolarization channel when optimal
estimates of the depolarizing parameter are available.

In section II we first briefly review quantum communica-
tions and the stabilizer formalism for describing QECCs, and
discuss their relationship to classical codes. In section III we
review quantum channels and quantum channel identification.
In section IV we present our simulation results using existing
quantum stabilizer codes from [11] over the commonly used
quantum Depolarizing Channel, showing how the imperfect
channel identification impacts the codes performance. Lastly,
we draw some conclusions and discuss future works.

II. QUANTUM CODES

The analog of classical ‘bit’ is a ‘qubit’, which can be
represented as a quantum state |ψ⟩ in a two-dimensional
complex vector space. This can be written as a superposition

|ψ⟩ = α0 |0⟩+ α1 |1⟩ (1)

where α0 and α1 are complex numbers satisfying |α0|2 +
|α1|2 = 1. The quantum state of N qubits has the form∑
αs |s⟩, where s runs over all binary strings of length N.

The 2N independent complex coefficients αs then satisfy the
normalization constraint |α0|2 + |α1|2 + . . .+ |α2N−1|

2
= 1.

Each of the 2N states |000 . . . 0⟩,|000 . . . 1⟩ . . . |111 . . . 1⟩ is
shorthand for the N-fold tensor product |0⟩ ⊗ |0⟩ . . . ⊗ |0⟩,
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|0⟩⊗|0⟩ . . .⊗|1⟩, . . . |1⟩⊗|1⟩ . . .⊗|1⟩. Suppose a quantum state
|ψ⟩ of size N is sent through a quantum noisy channel. The
outcome of the transmission can be written as E |ψ⟩, where
the error operator E takes the form of E = e1⊗e2⊗ . . .⊗eN ,
which can be considered as an N-fold tensor product of errors
operators ej , where j = 1 . . . N .

A typical quantum channel is the Pauli Channel in which
the error operators can be modeled by the three different Pauli
operators

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y =

(
0 −i
i 0

)
,

and the 2 × 2 identity matrix I . These matrices form a Pauli
group PN that act on N qubits. The elements of PN either
commute or anti-commute, and for all error operators E, F ∈
PN , the commutativity between them is defined as

E ◦ F =

{
1 if EF = FE
−1 if EF = −FE .

In what follows we will also refer to the Pauli matrices I , X ,
Y , and Z, as σ0, σ1, σ2 and σ3, respectively.

A. Preliminary on Quantum Stabilizer Codes

A stabilizer generator S that encodes K qubits in N qubits
consists of a set of Pauli operators on the N qubits closed
under multiplication, with the property that any two operators
in the set commute, so that every stabilizer can be measured
simultaneously. An example of a stabilizer generator S is
shown below for K = 1, N = 5 representing a rate 1

5 quantum
stabilizer code,

S =


Z Z X I X
X Z Z X I
I X Z Z X
X I X Z Z

 . (2)

Consider now a set of error operators {Eα} taking a state
|ψ⟩ to the corrupted state Eα |ψ⟩. A given error operator either
commutes or anti-commutes with each stabilizer Si (row of
the generator S) where i = 1 . . . N −K. If the error operator
commutes with Si then

SiEα |ψ⟩ = EαSi |ψ⟩ = Eα |ψ⟩ (3)

and therefore Eα |ψ⟩ is a +1 eigenstate of Si. Similarly, if it
anti-commutes with Si, the eigenstate is −1. The measurement
outcome of Eα |ψ⟩ is known as the syndrome.

B. Conversion between Quantum and Classical Codes

To connect quantum stabilizer codes with classical LDPC
codes it is useful to describe any given Pauli operator on
N qubits as a product of an X-containing operator, a Z-
containing operator and a phase factor (+1,−1, i,−i). For
example, the first row of matrix (2) can be expressed as

ZZXIX = (IIXIX)× (ZZIII). (4)

Thus, we can directly express the X-containing operator and
Z-containing operator as separate binary strings of length N .

In the X-containing operator a 1 represents the X operator
(likewise for the Z operator), and 0 for I . The resulting binary
formalism of the stabilizer is a matrix A = (A1|A2) of 2N
columns and M = N −K rows, where A1 and A2 represent
X-containing and Z-containing operators, respectively
Example 1: For example, the set of stabilizers in (2) appears
as the binary matrix A

A = (A1|A2) =


0 0 1 0 1
1 0 0 1 0
0 1 0 0 1
1 0 1 0 0

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 .

(5)
Due to the requirement that stabilizers must commute, a

constraint on a general matrix A can be written as e.g. [7].

A1A
T
2 +A2A

T
1 = 0. (6)

Note that the quantum syndrome can be conceptually consid-
ered as an equivalent to the classical syndrome Ae, where A
is a binary parity-check matrix and e is a binary error vector.

To summarize, the property of stabilizer codes can be
directly inferred from classical codes. Any binary parity-check
matrix of size M×2N that satisfies the constraint in (6) defines
a quantum stabilizer code with rate R = K

N that encodes K
qubits into N qubits.

C. CSS Codes

As mentioned earlier, an important class of codes are the
CSS Codes [3][4]. These have the form

A =

(
H
0

0
G

)
(7)

where H and G are MH × N and MG × N matrices,
respectively, (MH does not necessary equal to MG). Requiring
HGT = 0 ensures that constraint (6) is satisfied. If G = H ,
the resulting CSS code structure is called a dual-containing
code. Most classical (good) LDPC codes do not satisfy the
constraint (6).

III. QUANTUM CHANNEL MODELS AND ESTIMATION

A. Quantum Channel Models

Given some initial system state |Ψs⟩, a decoherence model
can be built by studying the time evolution of the system state’s
interaction with some external environment with initial state
|Ψe⟩. Without loss of generality we can assume |Ψs⟩ and |Ψe⟩
are initially not entangled with each other.

In terms of the density operators ρs = |Ψs⟩ ⟨Ψs| and ρe =
|Ψe⟩ ⟨Ψe|, the initial state of the combined total system can
be written as ρs ⊗ ρe. The closed evolution of ρs ⊗ ρe can
be described by a unitary U via U(ρs ⊗ ρe)U

†. To obtain
the output system state, ρouts , after some closed evolution U ,
we use ρouts ≡ ε (ρs) = Tre

[
U(ρs ⊗ ρe)U

†] where Tre is the
partial trace over the environment’s qubits. The channel ρouts ≡
ε (ρs) is a completely positive, trace preserving, map which
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provides the required evolution of ρs. It is possible to describe
such maps directly using an operator-sum representation,

ε (ρs) =

No∑
a=1

KaρsK
†
a, where

No∑
a=1

K†
aKa = I, (8)

and where Ka=1...No represent the so-called Kraus operators,
with No being the number of Kraus operators [14].

There are of course decoherence channels modeled on
specific qubit-environment interactions (e.g. see [9]). In this
work we will consider only the depolarization channel. Let
us introduce the depolarization parameter, f , of a qubit where
0 ≤ f ≤ 1, with f = 1 meaning complete depolarization
and f = 0 meaning no depolarization. In terms of the Pauli
matrices σi (here i = 0, 1, 2, 3), the depolarization channel for
a single qubit can be defined as ε (ρs) = (1 − f)ρs + f σo

2 .

Using the relation σo = 1
2

(
ρs +

3∑
j=1

σjρsσj

)
, we see that

the Kraus operators for the depolarization channel can be
written K1 =

√
1− 3f

4 σo, K2 =
√

f
4σx, K3 =

√
f
4σy , and

K4 =
√

f
4σz . Note that it is also possible to parameterize the

depolarization channel as ε(ρs) = (1−f ′)ρs+ f ′

3

3∑
j=1

σjρsσj ,

where f ′ = 3
4f . This latter form is more convenient for de-

coding purposes, and below we term f ′ as the flip probability.

B. Quantum Channel Estimation

The issue of quantum channel identification (quantum pro-
cess tomography) is of fundamental importance for a range
of practical quantum information processing problems (e.g.
[9]). In the context of LDPC quantum error correction codes,
it is normally assumed that the quantum channel is known
perfectly in order for the code design to proceed. In reality
of course, perfect knowledge of the quantum channel is not
available - only some estimate of the channel is available.
The key focus of this work is an investigation of this issue.
To make progress we will assume a depolarization channel
with some parameter f . However, we assume the true value
of f is unknown a priori, and must first be measured via some
channel identification procedure. This estimate of f will then
be used in the decoder in order to measure its performance
relative to a decoder in which the true f is utilized.

In general, quantum channel identification proceeds by
inputting a known quantum state σ (the probe) into a quantum
channel Γp that is dependent on some parameter p (in our
case p = f ). By taking some quantum measurements on the
output quantum state Γp(σ) which leads to some result R,
we then hope to estimate p . The input quantum state may
be unentangled, entangled with an ancilla qubit (or qudit), or
entangled with another probe. Multiple probes could be used,
or the same probe can be recycled (i.e. sent through the chan-
nel again). As can be imagined many experimental schemes
could be developed along these lines, and the performance
of each scheme (i.e. how well it estimates the true value of
the parameter p) could be analyzed. However, in this study

we will take a different tact. Here we will simply assume an
experimental set-up is realized that obtains the information-
theoretical optimal performance.

Optimal channel identification via the use of the quantum
Fisher information has been well studied in recent years,
particularly in regard to the determination of the parameter f
of the depolarizing channel (e.g. [15], [16], [17], [18], [19]).
Defining ρf = Γf (σ), the quantum Fisher information about
f can be written as

J(f) = J (ρf ) = tr [ρf ]L
2
f ,

where Lf is the symmetric logarithmic derivative defined
implicitly by

2∂fρf = Lfρf + ρfLf ,

and where ∂f signifies partial differential w.r.t. f . With the
quantum Fisher information in hand, the quantum Cramer-Rao
bound can then be written as

mse
[
f̂
]
≥ (NmJ(f))

−1

where mse
[
f̂
]

is the mean square error of the unbiased

estimator f̂ , and Nm is the number of independent quantum
measurements. In the simulations pursued here we will assume
the channel is constant over the block length of the codeword,
and unless otherwise stated we assume Nm = 1. Further,
we will assume two different cases for the quantum probe.
In case A we will assume the qubit probe is in a pure
unentangled state, and as such [15] the quantum Fisher infor-
mation about f relevant to each codeword can be shown to be
J (f) = [f (2− f)]

−1. In case B we adopt the scenario where
one pair of maximally entangled qubit pairs is consumed per
transmission of each codeword (one of the qubits traverses the
channel). In this latter case the quantum Fisher information
about f relevant to each codeword can be shown to be
J (f) =

[
f
(
4
3 − f

)]−1 [15]. Similar expressions for qudit
probes are available [19].

IV. SIMULATIONS

From the discussion in Section II, a stabilizer generator can
be described in the binary form, A = (A1|A2). It is also
worthwhile to note that it can also be described in a quaternary
form, where A1 and A2 are packed into a single matrix with
elements I , X , Y , Z. Since a close link between {I,X, Y, Z}
and {0, 1, ω, ω2} exists, where ω is the primary element in
GF(4), a quantum stabilizer code can be thought of as an
analog to a GF(4) classic code. Thus, a Belief Propagation
(BP) decoding algorithm in GF(4) [20] can be applied to
quantum stabilizer codes. For lower computational complexity,
we applied BP-decoding in GF(2). However, the decoder was
modified from the pure classical decoder in order to break
the degeneracy problem of stabilizer codes. To break the
degeneracy, a heuristic method presented in [20] was adopted.
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A. Iterative BP-Decoding Algorithm

Given our previous discussions, the decoding algorithm
applied in our simulations can be viewed as a variation of the
standard BP message-passing decoding algorithm taking place
in the binary field, with the decoder treating the depolarizing
channel as two independent binary symmetric channels. The
received values ri (here i = 1, . . . n, where n = 2N is the
classical block length) are either 0 or 1. These can be mapped
to measurement outcomes s ∈ {1,−1}M (syndrome) of the
received qubit sequence, and this syndrome is then used in
error estimation and recovery. Assuming an initial quantum
state representing a codeword, the initial probabilities pi for
the ith qubit of the state undergoing an X , Y or Z error are

pi =

{
f

′
for X, Y, or Z

1− f
′

for I
, (9)

where f ′ is the flip probability known at the decoder.
The standard BP algorithm operates by sending messages

along the edges of the Tanner graph. Let ubi→cj and ucj→bi

denote the messages sent from bit node i to check node j and
messages sent from check node j to bit node i, respectively.
Also denote N(bi) as the number of neighbors of bit node i,
and define N(cj) as the number of neighbors of check node j.

To initialize our algorithm, each qubit node sends out a
message to all its neighbors equal to its initial probability
value p obtained according to equation (9). Upon reception
of these messages, each check node sends out a message to
its neighboring qubit node given by

ucj→bi =
∑

t1...n∈{t|t ◦ cjT=sj)}

∏
b′i∈N(cj)\bi

ubi′→cj (10)

where N (cj) \bi denotes all neighbors of check node j except
qubit node i, and the summation is over all possible error
sequences t1...N . Each bit node then sends out a message to
its neighboring checks given by

ubi→cj = pi
∏

cj′∈N(bi)\cj

ucj′→bi (11)

where N (bi) \cj denotes all neighbors of qubit node i except
check node j. Equations (10) and (11) operate iteratively
until the message is correctly decoded or the maximum pre-
determined iteration number is reached.

Fig.1 illustrates the performance - i.e. the qubit error rate
(QBER) - our BP decoder achieves for an existing quantum
stabilizer code, namely the code A (rate=1/2) of [11]. The
lower solid line indicates the performance of our decoder
with perfect channel information. Whereas, the upper solid
line shows the performance of the decoder when no channel
information has been made available at the decoder. The
corresponding frame error rate (FER) is also shown for each
case. Note, the QBER is the fraction of the qubits that possess
an error, whereas the FER is the fraction of qubit blocks of
length N that contain at least one qubit error.
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Fig. 1. Qubit error rate (QBER) and frame error rate (FER) of an existing
quantum LDPC code from [11] with length N = 1034 is illustrated.

B. Simulations for imperfect channel knowledge

Consider now the case where a decoder can only attain
partial channel information by probing the quantum channel
using un-entangled and entangled quantum states (only one
measurement each, i.e. Nm = 1). To simulate case A and B
discussed in section III-B, for each encoded block of qubits
of length N transmitted through the depolarizing channel, an
estimated flip probability is randomly chosen at the receiver
side from a normal distribution (truncated in a range of 0
to 1) characterized by mean f

′
and variance (NJ(f

′
))−1,

wheref
′
= 3f/4.

Simulation results using imperfect channel knowledge as
discussed above are illustrated in Fig.2. The quantum LDPC
code used here is the same code adopted for Fig.1. The
decoding process terminates if 100 block errors are collected
or the maximum iteration number (100) is reached. Contrary
to Fig.1, the results in Fig.2 show the QBER and FER of the
stabilizer code when only partial channel information on the
channel is available at the decoder. We can clearly see that
using entangled quantum states for estimation yields a better
performance. Although not shown, as the mean value of f

′

approaches zero, the performance gap between the entangled
and un-entangled estimation methods approaches the expected
theoretical performance discussed in III-B.

In Fig.3, we collect the above results into the one plot
for direct comparison purposes. Note that as the number of
quantum states used to probe the channel goes to infinity, the
performance of the code will approach to the performance of
the curves marked as “perfect channel information”. As we can
see from the figure, even optimal channel identification using
one probe measurement leads to roughly an order of magnitude
hit on performance. We anticipate similar performance hits for
any state-of-the-art quantum LDPC code. That the increase in
the number of probing states leads to a better code perfor-
mance, demonstrates the trade-off between the number of qubit
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Fig. 2. Performance of a quantum stabilizer code of length N = 1034 with
imperfect channel information estimated using entangled and un-entangled
quantum states.

probes (or entanglement consumption) and code performance.
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Fig. 3. Overall performance of the quantum stabilizer code with length
N = 1034.

It is important to note that, as is the normally the case,
our performance curves are determined from simulation only.
We have not developed any theoretical framework that can
predict our new performance curves. In this context we note
the work of [21] in which LDPC code error performance
is theoretically predicted for the binary symmetric channel
as a function of a crossover probability pc and a different
initialization probability. It would be interesting to investigate
whether extensions of the concepts introduced in [21] could
deliver the necessary theoretical framework for directly pre-
dicting quantum LDPC code performance as a function of the
quantum Fisher information on the channel parameters.

V. CONCLUSION AND FUTURE WORK

Utilizing quantum probes which are either in un-entangled
pure quantum states or maximally entangled qubit pairs, we
have explored how channel identification in the quantum
depolarizing channel affects the performance of quantum
LDPC codes. Our results show the importance in quantum
communications of a viable channel identification campaign
prior to the decoding of any quantum codeword. Our work also
highlights the trade-off between entanglement consumption
and quantum LDPC code performance. Future work will
investigate similar issues for other quantum codes, consider
more generic quantum channels, and pursue quantum LDPC
code designs where uncertainty in the quantum channel is
directly embedded.
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