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Abstract—Cooperative transmission protocols are always de-
signed to reach the largest diversity gain and the largest network
capacity simultaneously. The concept of diversity-multiplexing
tradeoff (DMT) in MIMO systems put forward by Zheng and
Tse has been extended to this field. However, the concept of
multiplexing gain in DMT constrains a better understanding
of the asymptotic interplay between transmission rate, frame
error probability (FEP) and signal-to-noise ratio (SNR), and also
fails to predict FEP curves accurately. Two improved methods
are then put forward. One is by Narasimhan who proposes
finite-SNR diversity-multiplexing gain tradeoff which gives a
tighter lower bound of the FEP curves by applying nonlinear
programming in MIMO systems, and the other is by Azarian and
Gamal who propose a new rule called the throughput-reliability
tradeoff (TRT) which avoids the limitation of the conception
of multiplexing and elucidates the linearly asymptotic trends
exhibited by the FEP curves in block-fading MIMO channels.
The finite-SNR diversity-multiplexing gain tradeoff has already
been applied to cooperative relay channels. However, this method
is time-consuming in computation since nonlinear programming
is used, especially in large networks. In this paper, we will use
TRT rule to give the relationship between transmission rate, FEP
and SNR in decode-and-forward (DF) cooperative protocols. We
also exhibit the FEP curves predicted by TRT. To do this, We
first propose a symbol based slotted decode-and-forward (SSDF)
protocol as the infrastructure. Network information theory is also
used to bound the capacity of the protocol.

I. INTRODUCTION

Recently, there has been a growing interest in the design
and analysis of protocols in cooperative transmission systems
[1]-[5], [15], [17]-[20]. Such a system can be viewed as a
derivative form of MIMO system. As well known, MIMO is
generally used for increasing the amount of diversity to combat
channel fading or the number of the degrees of freedom [6]-
[9]. Under some particular arrangement, e.g., with clustered
and full-duplex relays, cooperative channels can mimic the
MIMO channels gracefully [20]. On the other hand, network
information theory has been studied for almost 30 years,
which focus on the achievable rates and capacity region in
various network channels [10]-[15], such as relay channels,
broadcast channels and so on. Thus, from a new perspective
of combining MIMO with network information theory, the
designer of protocols in cooperative transmission systems

should pay attention to not only the diversity gain but also
the network capacity.

In [16], Zheng and Tse give an formulation between the
diversity gain and multiplexing gain by using the Gaussian
code. The same derivation method can be extended to any
general code, which is called diversity-multiplexing tradeoff
(DMT). The DMT assumes a family of codes, in which
diversity gain d and multiplexing gain r are defined by

d � − lim
ρ→∞

log(Pe(ρ))
log ρ

and r � lim
ρ→∞

R(ρ)
log ρ

, (1)

where ρ, Pe(ρ) and R(ρ) represent the signal-to-noise ratio
(SNR), frame error probability (FEP) and transmission rate
respectively. So a scheme’s DMT means that at the r multi-
plexing gain, the diversity gain that the scheme acquires should
not exceed d(r). There must be a tradeoff between diversity
gain and multiplexing gain in MIMO systems among various
coding schemes. Now, this elegant formulation is successfully
used as a standard in cooperative communication systems to
evaluate the performance of different cooperative transmission
protocols [17]-[20].

Due to the limitation posed by DMT, Another two improved
methods have been put forward. One is by Narasimhan [21]
who focuses on the finite-SNR diversity-multiplexing trade-
offs. He proposes the outage probability curves in correlated
Rayleigh and Rician MIMO channels by using nonlinear pro-
gramming on the condition that SNR is finite. New definition
of diversity gain and multiplexing gain are also given in [21],

d � −∂ ln Po(ρ)
∂ ln ρ

and r � R

log2(1 + ρ)
, (2)

where Po is the outage probability. Thus, the diversity gain
defined at finite SNR is the slope of the log Po vs log ρ curves.
This method has been extended to cooperative relay channels
[22] where one source, one relay and one destination are taken
into account. Since the nonlinear programming is used to work
out the Po, the process of computation is time-consuming,
especially in large networks.

The other improvement is proposed by Azarian and Gamal
[23]. They pointed out the limitation of DMT imposed by
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the concept of multiplexing gain, that is, it will lead to a
malfunction in predicting the FEP curves due to

lim sup
ρ→∞

R

log ρ
�= lim inf

ρ→∞
R

log ρ
. (3)

Meanwhile, They put forward a relationship between the three
quantities {R, log ρ, Pe(R, ρ)}, which is called throughput-
reliability tradeoff (TRT) [23] where the reliability gain has the
the same meaning with the finite-SNR diversity gain defined
in [21]. From the simulations in [23], we can see that TRT
predicts the FEP curves by using the linear approximation
method, which implies that it is less computational than the
first method.

For the sake of the computational simplicity, especially in
lager networks, we pay attention to the TRT formulation. In
this paper, we consider the decode-and-forward (DF) coopera-
tive protocol with arbitrary number of nodes. In the DF proto-
col, relays receive the signals from source according to some
timing sequence arranged beforehand and then decode them
before retransmit them to destination, which is different from
amplify-and-forward (AF) protocol where relays retransmit
signals received from source without decoding them. An im-
portant factor to distinguish various protocols is the scheduling
strategy used to arrange the receiving and transmitting orders
of relays. Among various strategies, a simple and efficient
strategy is the one that used in slotted amplify-and-forward
(SAF) protocol [19]. Another well-known AF protocol is
non-orthogonal amplify-and-forward (NAF) protocol [3], [17],
which can be seen as a special case of SAF. Obviously, these
scheduling strategies in AF protocols can also be transplanted
to DF protocols.

To give the TRT relationship in DF protocols, we should:
1) find out the difference between DF cooperative channels

and MIMO channels: The difference between DF cooperative
channels and MIMO channels is that there are hops (relays)
between the source and destination in the former while the
source and destination are connected directly in the latter.
How to deal with these hops in channels’ model is important.
Network information theory is used to bound the protocols’
capacity [14]. Outage region is thus defined. By the conclusion
in [14], the capacity bound of networks with DF protocols and
arbitrary topologies can be work out. While in this paper, we
only focus on one hop between source and destination.

2) set up a simple and common DF protocol as infras-
tructure to ease the analysis: We apply the round-rubin
scheduling strategy used in SAF to the DF protocol so that we
establish the symbol based slotted DF (SSDF) protocol which
is detailedly introduce in the sequel. Even we analyze the
TRT formulation based on SSDF protocol, the same analytical
method can be extended to any other DF protocols.

3) exhibit the TRT relationship in SSDF protocol: We
extend the TRT analytical method proposed in [23] here after
outage regions are determinated in SSDF by using capacity
bounding technology given in [14]. Simulations are also
presented. From numerical results, we can see the asymptotic
trends predicted by TRT which linearly approximates to the

simulating curves.
We emphasize that, in quasi-static fading channels, codes

that approach capacity are typically used on each packet such
that the FEP is well approximate by the channels outage
probability [21]. So in this paper, we only focus on the outage
probability.

The rest of the paper is organized as follows. In section
??, we make a general view on the scheduling strategy’s
description of SAF protocol, and then we propose a symbol
based SDF protocol. TRT analysis on SSDF is deployed in
section III, where we prove the TRT formulation. Section
IV demonstrates the rule though numerical results, which
shows that besides MIMO systems, the concept of TRT is
also holding in cooperative AF protocols.

The notations used in this paper go as follows. (x)+ denotes
max{0, x}, (x)− denotes min{0, x}, R

N and C
N means the

set of real and complex N -tuples, and R
N+ denotes the set of

non-negative N -tuples. If some set O ⊆ R
N , we denote the

complete set of O as Oc, while O∩R
N+ as O+. Λx denotes

the auto-covariance matrix of vector x.

II. SYSTEM MODEL

For the sake of understanding, we give a simple model
description of SAF protocols. For more details, refer to [19].
Note that in Fig. 1, dashed boxes mean the receiving procedure
while the solid ones mean transmitting.

In the SAF protocol (see Fig. 1), the superframe is com-
posed of (N + 1) cooperative frames, and each cooperative
frame is transmitted in a time slot by the source.

s x0 x1 x2
... xN−1 xN

r0 x0 x0

r1 x1 x1
...
...
rN−1 xN−1 xN−1

d x0 x1 x2
...

xN−2

xN−1 xN

Fig. 1. Frame structure and scheduling strategy in SAF protocol.

Consider the extreme case where each cooperative frame in
SAF protocol only contains a single symbol, and the isolated
relays are arranged by round-robin scheduling strategy [19].
Each relay decodes the received signals and retransmits them.
Then we get the SSDF protocol naturally. By using relays
circularly, SSDF can deal with l > N + 1, where l is the
frame length.

Without loss of generality, we establish a SSDF cooperative
channel model with one source, one destination and N relays.
Each node is constrained by half-duplexing and each relay
is isolated from the other relays. All channels are assumed
to be flat Rayleigh-fading and quasi-static in at least one
frame period, all nodes are in half-duplex mode, and all noises
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Fig. 2. Cooperative channels with N isolated relays.

observed by relays and destination are Gaussian distribution.
Furthermore, we use gi, �, hi and ki,j to denote the channels

between the source and the i-th relay, the source and the
destination, the i-th relay and the destination, the i-th relay and
the j-th relay respectively (see Fig. 2), which are all Rayleigh
distribution with zero mean and variance σ2

gi
, σ2

�
, σ2

hi
, σ2

kij
re-

spectively. We take σ2
gi

= σ2
�

= σ2
hi

= σ2
kij

= 1 in the numer-
ical examples. All noises observed by the relay and destination
have zero mean and variance σ2

rj
(j = 0, 1, 2, · · · , N − 1) and

σ2
d. We assume that σ2

rj
= σ2

d = σ2. When relays are isolated
from each other, the channels coefficients ki,j = 0. Similar to
the power allocation in [22], we denote P as the average total
network transmit power over a frame, that is,

E
{

1
l

l−1∑∑∑
i=0

|xs,i|2
}

= κP

E
{

1
l

l−1∑∑∑
i=0

|xrj ,i|2
}

= τjP (j = 0, 1, 2, · · · , N − 1)

κ +
N−1∑∑∑
j=0

τj = 1 and κ, τ0, · · · , τN−1 ≥ 0,

(4)

where xs,i denotes the i-th symbol in a frame transmitted
by source, and xrj ,i denotes the i-th symbol in a frame
transmitted by the j-th relay. Based on the power constraint
in (4), we define the network SNR as

ρ � P

σ2
. (5)

By applying these definitions, we then give some preliminary
theoretical results that will be used in the sequel.

The bounds in Lemma ?? can facilitate the definition of
outage regions in SSDF protocol, which will be analyzed in
details in the following section by applying network informa-
tion theory.

III. OUTAGE REGIONS IN SSDF PROTOCOL: A NETWORK

INFORMATION THEORY APPROACH

An achievable capacity region of large networks has been
worked out by network information theory [14] where multi-
hop are taken into account with decoded strategies used in each
relay. [14] concludes the common results of capacity regions

in arbitrary topologized networks (feedback is not considered).
Results in [10], [13] can be seen as a special cases of [14].
By the conclusions in [14], we get the maximum capacity of
SSDF protocol,

Imax ≤ max {min{I(Xs; Yr), I(Xs,Xr; Yd)}, I(Xs;Yd)} ,
(6)

where X denotes the transmitted signals in each node, and Y
denotes the received signals in each node. Since there are N
relays in SSDF protocol. So Xr = (Xr,0,Xr,1, · · · ,Xr,N−1)
and Yr = (Yr,0, Yr,1, · · · , Yr,N−1).

In non-ergodic fading channels, performance of the con-
nection is evaluated in terms of outage probability, which is
defined as the event that the instantaneous mutual information
does not support the intended rate [25], [26], i.e.,

Op � {H|I(x; y|H = H) < R}, (7)

where H is a channel realization. The lower bound of Op’s
probability is defined as outage probability Po(R, ρ) [25], [26].
Therefore,

Po(R, ρ) = inf
Λx

Pr{Op}

= Pr
{

max
Λx

I(x; y|H) < R

}
.

(8)

So under some channel realization H , there are three outage
events according to (6),

Es;r : I(Xs; Yr|H) =
l−2∑∑∑
i=0

log(1 + κρ|giN
|2) < lR

Es,r;d : I(Xs,Xr; Yd|H) = log(1 + κρ|�|2)+
l−2∑∑∑
i=0

log
(

1 + κρ|�|2 +
NlτiN

l − 1
ρ|hiN

|2
)

< lR

Es;d : I(Xs; Yd|H) = log(1 + κρ|�|2) < R.

(9)

Then from (6), we conclude that the outage event of the whole
network with SSDF protocol is

Eo : max{min{I(Xs; Yr|H), I(Xs,Xr; Yd|H)},
I(Xs; Yd|H)} < lR,

(10)

that is,

Eo = (Es;r ∪ Es,r;d) ∩ Es;d. (11)

From (9), we notice that Es;r is irrelevant with Es,r;d and
Es;d, and Es,r;d ⊆ Es;d. So

P (Eo) = P ((Es;r ∪ Es,r;d) ∩ Es;d)
= P ((Es;r ∩ Es;d) ∪ Es,r;d)
= P (Es;r)P (Es;d) + P (Es,r;d) − P (Es;r)P (Es,r;d)
= P (Es;r)(P (Es;d) − P (Es,r;d)) + P (Es,r;d).

(12)

(12) shows that P (Eo) is a increasing function of P (Es;r),
P (Es,r;d) and P (Es;d). According to Lemma ??, when ρ →
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∞, the lower bounds of the three probability values are

P (Es;r) ≥ Pr

{
l−2∑∑∑
i=0

log
(
1 + ρ|giN

|2) < lR

}
,

P (Es,r;d) ≥ Pr
{
max

{
log

(
1 + ρ|�|2)l

,

log
(
1 + ρ|�|2) +

l−2∑∑∑
i=0

(
1 + ρ|hiN

|2)} ◦
< lR

}
,

P (Es;d) ≥ Pr{log(1 + ρ|�|2) < R},

(13)

and the upper bounds are

P (Es;r) ≤ Pr

{
l−2∑∑∑
i=0

log
(

1 +
lρ

2l − 1
|giN

|2
)

< lR

}
,

P (Es,r;d) ≤ Pr

{
max

{
log

(
1 +

lρ

2l − 1
|�|2

)l

,

log
(

1 +
lρ

2l − 1
|�|2

)
+

l−2∑∑∑
i=0

(
1 +

lρ

2l − 1
|hiN

|2
)}

◦
< lR

}
,

P (Es;d) ≤ Pr
{

log(1 +
lρ

2l − 1
|�|2) < R

}
.

(14)

We define another outage event Er;d, which satisfy that
Es,r;d = Es;d ∩ Er;d. From (13) and (14), we get the lower
bound of P (Er;d), that is,

P (Er;d) ≥ Pr

{
log

(
1 + ρ|�|2) +

l−2∑∑∑
i=0

(
1 + ρ|hiN

|2) < lR

}
,

(15)
and the upper bound

P (Er;d) ≤

Pr

{
log

(
1 +

lρ

2l − 1
|�|2

)
+

l−2∑∑∑
i=0

(
1 +

lρ

2l − 1
|hiN

|2
)

< lR

}
.

(16)

So we rewrite the network outage probability of (12) as

Po = P (Eo) = P ((Es;r ∪ Er;d) ∩ Es;d). (17)

Based on these conclusions, we then make a more detailed
TRT analysis on the SSDF protocols.

IV. THROUGHPUT-RELIABILITY TRADEOFF ANALYSIS OF

SSDF PROTOCOL

The asymptotic relationship of R, ρ and Po(R, ρ) has been
well derived in MIMO channels [23], [24]. Our work proves
that such relationship also holds in SSDF protocol.

Theorem 1: For the one source, one destination and N
relays SSDF block-fading cooperative channels with l (l ≥
N + 1) symbols per frame, there are k (N ≥ k ≥ 0, k ∈ Z)
operating regions, in which

lim
ρ→∞

(R,ρ)∈R(k)

log Po(R, ρ) − c(k)R
log ρ

= −g(k), (18)

where R(k) means the k-th operating region, g(k) is referred
to the reliability gain coefficient and g(k)

c(k) is referred to the
throughput gain coefficient.

Consider two cases, (l − 1)N = 0 and (l − 1)N �= 0.
4) (l − 1)N = 0: The k regions can be combined to two

super operating regions, i.e.,

R(k)

�




{
(R, ρ)| (l−1)(k+1)

lN > R
log ρ > (l−1)k

lN

}
,

N > k ≥ 0,{
(R, ρ)|1 > R

log ρ > l−1
l

}
,

k = N,

(19)

and {c(k), g(k)} are defined according to R(k),

{c(k), g(k)} �




{
1 + lN

l−1 , 1 + N
}

,
N > k ≥ 0,

{1, 1}, k = N.
(20)

5) (l − 1)N = m (0 < m < N): There are two extreme
cases, i.e., the remaining m symbols are transferred through
the best m relay channels and the worst m relay channels.
They give the two bounds of the outage probability curves.
When the best m source-relay channels are first used (BCFU),
there are three super regions:

R1(k)

�




{
(R, ρ)| (l−1+N−m)(k+1)

lN >

R
log ρ > (l−1+N−m)k

lN

}
,

m > k ≥ 0,{
(R, ρ)| (l−1−m)(k+1)+mN

lN >

R
log ρ > (l−1−m)k+mN

lN

}
,

N > k ≥ m,{
(R, ρ)|1 > R

log ρ > l−1
l

}
,

k = N,

(21)

and {c1(k), g1(k)} are defined according to R1(k), that is,

{c1(k), g1(k)}

�




{
1 + lN

l−1+N−m , 1 + N
}

,
m > k ≥ 0,{

1 + lN
l−1−m , 1 + (l−1)N

l−1−m

}
,

N > k ≥ m,

{1, 1}, k = N.

(22)

When the worst m source-relay channels are first used
(WCFU), then

R2(k)

�




{
(R, ρ)| (l−1−m)(k+1)

lN >

R
log ρ > (l−1−m)k

lN

}
,

N − m > k ≥ 0,{
(R, ρ)| (l−1+N−m)(k+1)+mN−N2

lN

> R
log ρ >

(l−1+N−m)k+mN−N2

lN

}
,

N > k ≥ N − m,{
(R, ρ)|1 > R

log ρ > l−1
l

}
,

k = N,

(23)
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and {c2(k), g2(k)} are defined according to R2(k), that is,

{c2(k), g2(k)}

�




{
1 + lN

l−1−m , 1 + N
}

,
N − m > k ≥ 0,{

1 + lN
l−1+N−m , 1 + (l−1)N

l−1+N−m

}
,

N > k ≥ N − m,

{1, 1}, k = N.

(24)

V. CONCLUSION

We base our work on the Azarian and Gamal’s elegant
formulation concluded from MIMO systems to throw a light
on the asymptotic interplay between R, log ρ and Po(R, ρ)
in DF protocols. To do this, we first find out the differences
between DF cooperative channels and MIMO channels, i.e.,
in DF cooperative channels there are at least one hop between
source and destination while in MIMO channels the source and
destination are directly connected. There are many scheduling
strategies in cooperative protocols which have nothing to do
with the modes relays use to deal with the received signals
from source. So these scheduling strategies can be applied to
both AF and DF protocols. The scheduling strategy in SAF
is an efficient one which can be planted to DF. By applying
this scheduling strategy, we get SSDF protocol which is used
as our infrastructure to study TRT rule in DF protocols. Then
we use network information theory to get the SSDF’s network
capacity. According to the network’s topology of SSDF pro-
tocol, three outage events are defined and outage regions can
thus be acquired. The outage regions are imperative to work
out the outage probability Po(R, ρ). At last we deduce the
TRT formulation on the established network outage regions
of SSDF protocol to reveal the relationship between R, log ρ,
Po(R, ρ). We predict that the same deduction method can
be used in other one hop and multi-hop DF protocols with
different DMT since network information theory gives the
capacity regions of arbitrary topologized networks by which
networks’ outage regions can thus be worked out.
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