
Learning Automaton based Distributed Caching for
Mobile Social Networks

Chuan Ma, Zihuai Lin, Loris Marini, Jun Li, and Branka Vucetic
School of Electrical and Information Engineering, University of Sydney, 2006 Sydney, Australia

Email: {chuan.ma, zihuai.lin, loris.marini, jun.li1, branka.vucetic}@sydney.edu.au

Abstract—In this paper, a novel distributed caching strategy in
mobile social networks based on device-to-device communications
is proposed. The proposed approach combines the characters
of social networks to handle some practical issues, e.g., the
selfishness of users. In order to maximize the throughput of the
whole system, a fast convergence learning automaton, called the
discrete generalized pursuit algorithm is utilized. Incorporating
with social characters, the algorithm not only optimizes the
content placement problems in caching theory, but also satisfies
the physical and social constraints appropriately. Simulation
results show that, compared with other investigated caching
strategies, the proposed algorithm has higher convergence speed
and at the same time, it can reduce the transmission delay
and improve the system throughput. Moreover, the proposed
algorithm can get a better performance in higher density district.

I. INTRODUCTION

The proliferation of wearable and hand-held smart devices

is posing new challenges on existing wireless networks. High

definition recording capabilities together with the widespread

of social media are among key factors which are responsible

for reducing uplink-downlink asymmetries. Moreover, with

the bulk of wireless traffic dominated by video streaming,

the network efficiency of centralized intra-cellular topologies

will fall fast below the satisfactory levels [1]. Owing to the

availability of high capacity and low-cost storage devices, data

caching has been proposed to reduce the latency and increase

the efficiency of heterogeneous networks.

In particular, there has been a demand for developing

intelligent caching strategies in mobile cellular networks to

enable data access through nearby content providers. Both

in 3G mobile and 4G LTE-Advanced networks, caching have

both been demonstrated its ability in reducing mobile traffic by

one third to two thirds [2]. However, how to cache is always

a difficult problem for researchers to solve. In [3], the authors

use a distributed cache replacement strategy based on the Q-

learning to replace the cache service data in the base station.

The Q-learning is a well used reinforcement learning technique

which can find an optimal action-selection policy from the

Markov decision process, but the convergence time is much

longer. In [4], the authors investigate a learning automaton

denoted by the discrete generalized pursuit algorithm (DGPA)

which helps caching in the small Base Stations.

However, in device-to-device (D2D) underlaying cellular

networks, the caching scheme faces a nontrivial and practical

problem, which is how to encourage users sacrifice their own

storages to serve others. In order to solve this kind of problem,

a cooperative game in [5] is proposed to set up rules for every

player, which will bring relevant rewards or punishments.

Nevertheless, since not everyone would like to join the game

or follow the rules, the statement in [5] may be impractical

in some sense. Considering this, combined with the notion of

social relation among users, there is a way to use the social

relationship to promote caching.

Since 1930s, social networks have been discovered and

studied which have an obvious trend to become increasingly

popular [6]. In social networks, there are four characters, i.e.,

tie, community, centrality and bridge [7]. Tie means two users

have some relationship to be connected, such as real rela-

tionship (kinship, colleague) or virtual relation (two users are

friends in the Facebook). Community can be formed according

to the social relations, such as common interests. Centrality

is a quantification of the relative structural importance of

one user and bridge is the only way that connects different

communities. In order to promote D2D communications, we

intend to utilize a learning automaton combined with the

characters of social networks to improve the caching strategy.

In this paper, we propose a fast convergence learning

automaton (LA), whose environment feedbacks are determined

by the social characters. This LA helps users to cache par-

ticular files, thus in return can improve the accurate rate

of storing required files. Firstly, different communities are

divided according to same locations, interests or background,

which can be also called clusters. Then, important users

(IUs) in each community are selected as a prior, which

are used to cache files and provide downloading service for

others via D2D links. Moreover, the fast-convergence discrete

generalized pursuit algorithm with social characters (DGPA-

SC) is used for each IU to complete the caching process.

Simulation results show that the proposed learning algorithm

convergence iterations reduce significantly compared with the

Q-learning [3] (e.g., 123 iterations vs. 2000 iterations). The

total transmission time is also shorter than other investigated

caching strategies.

The rest of this paper is organized as follows. In Section

II, the system model is presented and the methods to divide

different communities are described. The IUs are chosen

and then the transmission delay which need to optimize

is evaluated. In Section III, the process of the DGPA-SC

is presented and we propose a corresponding algorithms to

solve the caching problem. Simulation results are presented in
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Fig. 1. Illustrative example of the considered network

Section IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

We focus on the scenario of one cell involving all users

(cellular and D2D users). The network is artificially divided

into different communities according to same location, inter-

ests or background. In one community, each user can choose

to communicate with the base station via the cellular link or

to communicate with other users directly via the D2D links.

The users in this situation also have two constraints: the social

constraint (they have stable social relations with each other so

that they are glad to communicate) and the physical constraint

(the actual distance between a transmitter and a receiver is

not larger than the maximum D2D transmission distance).

Fig. 1 gives a simple example of the considered network.

There are two communities illustrated in the network which

are formed by social and physical constraints. In Community

A, one important user A receives date from the macro cell

base station via the cellular link, then transmits the data to a

normal user B via the D2D link.

B. System model

In one community, we consider the downlink transmission

of a single carrier macro cell network. There are N =
{1, 2, ..., N} users overlaid on this macro cell network. Among

the users, Mc = {1, 2, ...,Mc} cellular users are chosen by

the base station to store files in their caches and Md =
{1, 2, ...,Md} D2D users tend to download required files from

the IUs via the D2D links. The cellular users are also defined

as the IUs. To take the social and physical constraints into

account, we introduce one graph Gs,p
c � (Md, ξ

s,p
c ), where

ξs,pc � {(a, b) : es,pab = 1, ∀a ∈ Mc, b ∈ Md}. es,pab = 1 if and

only if user a in Mc has stable and positive social relation

with user b in Md, and their physical distance allows them to

form a D2D link.

Then we give a method to choose the IUs. In the process

of selecting the IUs, the betweenness centrality B and avail-

able storage capacity C are chosen to determine the social

importance I, such as

I = μ·B + ν·C, (1)

where μ and ν are tunable parameters which satisfy μ+ν = 1.

Betweenness centrality B measures the extent of a node

which lies on the paths linking other nodes, and it can be

regarded as a measure that a node control information flowing

between others. Thus, betweenness centrality represents the

importance of one node. According to [8], the betweenness

centrality of node i can be calculated as

B(pi) =
N∑
j=1

∑
j<k

gjk(pi)

gjk
, (2)

where gjk is the number of geodesic (shortest) paths linking

node j and node k, and gjk(pi) is the number of those geodesic

paths that include or pass node i.
After detecting every user equipment’s available storage

capacity C, the base station choose a number of important

users Mc according to their social importance I.

C. Problem Analysis

The transmission channel is modeled as the Rayleigh fading

channel [9]. A certain MAC layer protocol, e.g., Time-Division

Multiple Access (TDMA), is assumed to be employed by the

base station and we assume one IU can only communicate

with one normal user simultaneously. Let ζcd represent the

distance between an IU and a normal user and let ζbd represent

between the base station with a normal user, respectively. We

further denote the path loss exponents of these two links (the

D2D and cellular links) by λcd and λbd, respectively. The

additive white Gaussian noise is denoted by N0. According

to [9], the transmission rates of D2D and cellular links can be

respectively expressed as

rci,dj
=

BW · log2(1 +
Pci,dj

|hcd|2∑
ci′∈Mc,dj′∈Md

Pci′ ,dj′ |hcd|2 + Pb,dj′ |hbd|2 +N0
),

(3)

and

rb,dj = BW · log2(1 +
Pb,dj

|hbd|2∑
ci′∈Mc,dj′∈Md

Pci′ ,dj′ |hcd|2 +N0
),

(4)

where BW denotes the bandwidth which is allocated in this

community. |hcd|2 = (ζ−λcd

cd ) · |h0|2 and |hbd|2 = (ζ−λbd

bd ) ·
|h0|2 denote the channel gain of these two links, and |h0|2 is

the second-order statistics of the Rayleigh fading. Pci,dj and

Pbdj represent the transmission power of the important user ci
and the base station b, respectively. The expressions (3) and (4)

are generic, including the situation with inactive D2D pairs.

In fact, if a D2D pair (ci′ , dj′) is inactive, we simply set the

corresponding transmission power Pci′ ,dj′ to zero. From (3)
we can see that a D2D link suffers interferences from other

D2D links and the occurrent cellular link as they share the

same radio resources.

The different communication demands for the jth receiver

are denoted by Yj . Combining all the transmission rates
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together, we can get the total transmission time according to

different Yj :

Ttrans =

Nbd∑
j=1

Yj

rb,dj

+

Ncd∑
j=1

Yj

rc,dj

. (5)

Here, Nbd denotes the number of the cellular links and Ncd

denotes the number of available D2D links. The expression

(6) is generic, including the situation with simultaneous active

D2D pairs. Nbd and Ncd satisfy the condition:

Nbd + 2 ·Ncd ≤ N. (6)

After determining the number of important users, the base

station should distribute files into the IUs in off-peak hours.

Let Pb,cj denote the transmission power of the base station

when the base station transmits information to the IUs, so the

caching rate is

rb,ci = B · log2(1 +
Pb,cj |hbc|2

N0
), (7)

where |hbc|2 = (ζ−λbc

bc ) · |h0|2, and ζbc and λbc denote the

distance and the path loss exponent of this link, respectively.

N0 represents the additive white Gaussian noise. So the final

transmission delay including caching stage and transmission

stage can be expressed by:

Ttotal = Ttrans +

Mc∑
i=1

Yi

rb,ci
, (8)

Our purpose is to maximize the system throughput, which

is equivalent to minimize the total transmission delay. As D2D

links can communicate simultaneously, the delay is reduced.

Thus, increasing the number of available D2D links as well

as improving caching accuracy are critical in our system.

III. DGPA-SC FOR CACHING

Caching can be performed by the IUs. This enables other

users to download files directly from the IUs rather than to ask

the base station for help. According to [4], the DGPA is a good

tool which help IUs to learn caching strategies. We combine

this tool with the Social Characters, denoted by the DGPA-

SC, and apply it in the IUs. It will increase the probability

of caching required files. As a result, the number of available

D2D links will increase.

A. Discrete Generalized Pursuit Algorithm

The goal of learning automaton (LA) is to determine

an optimal action out of a set of allowable actions A =
[α1, α2, ..., αs]. The LA has a probability vector P(t) =
[p1(t), p2(t), ..., ps(t)], where pi(t) is the probability that the

automaton will select the action αi at time t.
s∑
1
pi(t) = 1,

and the probabilities satisfy a reward estimation d(t) =
[d1(t), d2(t), ..., ds(t)] [10]. In our case, the action is the

process that one learner (one IU) chooses one specific file

from the file library to cache. This action is taken following

the probability vector and will get a positive reward from the

social network environment if the file is the optimal one.

A type of variable structure stochastic automaton is consid-

ered and we specifically focus on the DGPA, which is proven

to be the fastest and most accurate algorithm for LA [10]. This

algorithm generalizes the concepts of the pursuit algorithm by

”pursuing” all the actions that have higher reward estimates

than the current chosen actions.

At each iteration, by applying the algorithm, the number of

actions which have higher reward estimates than the current

chosen one are counted. Let K(t) denote this number. By

using the DGPA, the probability of all the actions with higher

estimates will increase with the amount of Δ/K(t), and the

probability of all the other actions except the chosen one will

decrease with the amount of Δ/(r −K(t)). Δ = 1/rH is a

resolution step and H is a resolution parameter.

The algorithm recursively updates the action probability

vector P(t) by the following equation:

P(t+ 1) = P(t) +
Δ

K(t)
· e(t)− Δ

r −K(t)
· [u − e(t)], (9)

where e is a unit vector and can be expressed as:

ei(t) =

{
1, if di(t) = max{dj(t)};

0, otherwise.

ej(t) =

{
0, if dj(t) ≤ di(t);

1, if dj(t) > di(t).

(10)

According to (10), the probability of different action is dis-

played as following:⎧⎪⎪⎨
⎪⎪⎩

pj(t+ 1) = min{pj(t) + Δ
K(t) , 1}, such that dj(t) > di(t);

pj(t+ 1) = max{pj(t)− Δ
r−K(t) , 0}, such that dj(t) < di(t);

pi(t+ 1) = 1− ∑
j �=i

pj(t+ 1).

(11)

B. Environment and Feedback with Social Characters

In our model, we assume the transmission time among

different D2D users is almost equal. This is because users

share the same channel bandwidth, and the difference of

physical distances among them is small within one community.

Therefore, other differences among users need to be consid-

ered, e.g., the social influence.

As social networks display a high degree of transitivity,

there is a heightened probability of two users being acquainted

if they have one or more other neighbors in common. The

degree of similarity among users also has an important effect

in terms of information dissemination. For example, when the

degree of similarity between two users is lower, more time

would be expected to take while transmitting the same length

of information. As a result, we use the degree of similarity

to determine the closeness of two D2D users. A new method

to calculate the environment feedback according to different

similarities is given below.
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We first give the updating equations of reward estimation

d(t) for the chosen action:⎧⎪⎨
⎪⎩

Zi(t+ 1) = Zi(t) + 1;

Wi(t+ 1) = Wi(t) + β(t);

d̂i(t+ 1) = Wi(t+1)
Zi(t+1) ,

(12)

where Zi(t) and Wi(t) respectively represent the number of

times the action i has been chosen and has been rewarded.

β(t) ∈ [0, 1] is a binary factor reflecting the positive or

negative feedback. If the feedback is positive (β = 1), this

action is rewarded.

One IU is pursued to cache one specific file in the library

F at each learning iteration. The cached file would produce

different social influences according to different similarities

among users. If one normal user can not find its required

file from its most similar neighbor, it will choose other less

familiar IUs or the base station to download.

The degree of similarity can be measured by the ratio of

common neighbors between individuals. According to [11], if

one IU c, and one normal user d is connected, let V (c), V (d)
denote the set of neighbors of user c and d, respectively. Let

z be the common neighbors of user c and d and let V (z)
denote the number of node z′s neighbor. K(z) is denoted by

the degree of z and K(z) = |V (z)|. Since every IUs can

only communicate with one normal user at one time, so we

should calculate every normal user and their corresponding

IUs’ similarity by,

qd,c =
∑

z∈V (d)∩V (c)

1

K(z)
. (13)

If d and c have no common neighbors , then qd,c = 0. Next

we normalize the similarity Sd,c:

Sd,c =
qd,c∑

c∈Mc

qd,c
. (14)

The matrix S represents the unified similarity between one

normal user d and its important neighbors. We assume that

a normal user would like to choose the IU with the highest

similarity with it if this IU has the required file f . This action

is determined to get a positive reward ΨP . Otherwise, it would

get a negative reward ΨN . The reward functions are given by,{
ΨP = lf · Sd,c

ΨN = −lf · Sd,c′ ,
(15)

where lf is the probability that file f is required. We use Zip−
f distribution, which is commonly used in the file popularity,

to model this probability lf .

The negative reward ΨN means that this IU is chosen by

other normal users while their similarity is not the highest. So

we rewrite the reward equation:{
ΨP = lf · Sc,d

ΨN = −lf · Sc,d′ .
(16)

Thus, for one IU c, the aggregated reward function is

expressed as :

Rf
c =

∑
ΨP +

∑
ΨN . (17)

If Rf
c > 0, then β = 1 and this action can get a positive

reward. In this case the estimation vector d(t) can be updated.
The proposed algorithm is guaranteed to converge [10].

Because of the paper limit, we only show the proof in two

steps. First, the DGPA-SC possesses the moderation property.

This is because the magnitude of decrement of any action

probability is bounded by the value 1/rH at any iteration of

the algorithm. Second, the DGPA-SC possesses the monotone

property. Due to these properties, p(t) is a submartingale.

Thus, according to the submartingale convergence theorem,

p(t) will converge to 1 with probability one. Therefore, the

algorithm is proven to converge.

C. Game Initialization
The vector probability of each action P(t) is initially set to

be equal. The vector of estimates for the reward probabilities

d(t) is initially set to be zero for any learner in this game,

which can be referred to game initialization. Learners keep

on selecting files randomly until each file is selected over a

minimum number of times. At the same time P(t) and d(t)
are updated according to (9) and (12), respectively. It will

guarantee the impartiality of the game. If d(t) �= 0 for all

actions, the game initialization is successful.

D. Caching In Advance
After an IU choosing one file from the library, which would

be the most beneficial to its neighbors, the base station starts

to offer this service to the IU during the off-peak hours. After

that, the IU can repeat the learning process to store another

file until its available storage is full. Then the learning process

comes to another IU. After finishing caching, the base station

can get the total caching time Tcache.

IV. PERFORMANCE EVALUATION

A. Simulation Scenario
A wireless network consisting of one macro-cell base station

is considered. In this section, we will present the MATLAB

simulation results of our proposed scheme. The base station is

designed as an omniscience, with 1000 meters’ coverage [5].

In this range, there are a number of communities which are

formed and divided by the social connections and physical dis-

tances. We assume that users are movable in one community.

Each community consists of the maximum of 800 randomly

distributed user equipments. The community radius is about

200 meters. The D2D communication distance constraint is

no longer than 25 meters. Both the macro-cell base station

and user equipments share the same frequency bandwidth

where the non-orthogonal downlink transmission is assumed.

The simulation is carried out in one isolate community. Users

can only communicate with others in the same community

by pre-establishing and pre-setting social characters by some

incentives [7]. The tunable variables μ and ν are set to 0.5.

The system parameters are listed in Table I.
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TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of Macro-cell BS 1
Coverage radius os BS 1000 m
Transmission power of BS 46 dBm
Coverage radius of one Community 200 m
Number of User Equipments 800
Distance Constraint of D2D 25 m
Transmission power of D2D 24 dBm
System Bandwidth 5 MHZ
Noise figure 7 dB

D2D pathloss (d)−λ, λ = 3
Requirement demands 100MB
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Fig. 2. The average iterations for convergency of different resolution
parameter H

B. Convergency and Accuracy

We first test and verify the convergence of the DGPA-

CS in a Normal environment, in which the probability of

requested files follows a discrete additive gaussian-like random

distribution with the expectation E[α̂(t)] = α0 and variance

δ = 1. The social similarities among users are pre-determined

according to the power law distribution. α0 is the optimal

action belonging to the available action set A. Although it

is impractical for many applications, a Normal environment

can provide a lower bound of iterations for the performance

of the DGPA-CS, which is a strong evidence to support the

convergence. As shown in Fig. 2, to guarantee the universality,

the average number of iterations for different space action size

is more than 10 times. As the space action size grows, the

average iterations increase. For example, when the resolution

parameter H = 1, the number of iterations of 20 actions is

about 1.8 times larger than the number of 10 actions. As

to a smaller resolution parameter H , learning will take less

time to converge. For example, when H = 0.5, the number

of average iterations is almost half (48.9%) of the number

when H = 1 (42 vs. 86). Compared with the results in [3], in

which simulations are run for 32 actions using the Q-learning

algorithm and over 2,000 iterations are taken to converge,

our algorithm only requires 123 iterations on the condition

of H = 2. It clearly show that our DGPA-CS algorithm is

much faster than the Q-learning.

Fig. 3 depicts the different average accuracy rates of dif-

ferent resolution parameter H . The accuracy rate represents
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Fig. 3. The average accuracy rate of different resolution parameter H

that the learning process results in taking the optimal action

α0 without error. We run simulations over 50 times for each

action size to calculate the average accurate rate. It is shown

that though the action space size grows, the average accuracy

rate remains no change. For large H , the accuracy rate is high

but its convergence speed is slow. We found that when H = 2,

its accuracy rate is almost 100%, which would produce a great

advantage when applying this algorithm into caching strategy.

C. Transmission Rate and Time

The transmission rate and time are simulated to present the

advantage of our algorithm. Fig. 4 represents the transmission

rate for both D2D links and cellular links. The two rates

both demonstrate descending trends with different decreasing

speeds. In addition, when the number of IUs (NIU ) increases,

the decrement of the rate of the D2D links is more obvious

than the cellular links. When NIU is smaller, more users

will ask the base station for help and the rate of the D2D

links is much larger than the cellular links in this situation,

e.g., 1.57 × 105 bps vs. 1.26 × 104 bps when NIU = 25.

However, as NIU grows, more D2D links are established. The

gap between these two becomes smaller, viz., 2.28× 104 bps

vs. 1.24 × 104bps when NIU = 300. Note that, we assume

the transmission power is unchanged. So the transmission rate

is only affected by the interference from other links. If NIU

is large, the D2D link will get serious interference. However,

as the base station has higher transmission power compared

to the D2D transmitter, the rate of the cellular links will not

get severe influence.

Fig. 5 (a) and (b) show the transmission time for different

caching strategies. The two figures describe a comparison

of our DGPA-CS caching algorithm with random caching

(random choosing files from a 10 size of library), the MRU

(caching most recent used files) [3], and no caching. According

to the Zip− f distribution, the file popularity are preset with

discounted rate γ = 0.5.

We first simulate the scenario that D2D links happen

simultaneously. In this case, the interference from other D2D

links is the largest. From Fig. 5 (a) we can see that our DGPA-

SC caching strategy has better performances than others.
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Fig. 5. The transmitting time of D2D links for different numbers caching
strategies

For example, compared with the MRU and random caching,

the total transmission time of the DGPA-SC is 1.5 × 106s
and 1.7 × 106s shorter, respectively, on the condition of

NIU = 200. As the number of IUs increases, the advantages

become more obvious. When NIU = 300, the gaps between

the DPGA-SC and the MRU and between the DGPA-SC and

random caching are 2.1 × 106s and 2.5 × 106s, respectively.

This reveals that our strategy has better performance in higher

population density district. The simulation result in Fig. 5 (b)

also depicts a similar trend. We set up D2D links happening

asynchronously in this case and the interference impact can

be reduced. For example, in comparison with the MRU and

random caching, the transmission time of the DGPA-SC is

reduced by 1.18 × 105s and 2.25 × 105s, respectively, when

NIU = 400. We also find that the total transmission time in

Fig. 5 (b) is always shorter than Fig. 5 (a) (4.36 × 106s vs.

9.1×107s when NIU = 250). This is because the interference

among D2D links is a main factor affecting the transmission

rate. If there are more available D2D links, more transmission

time will be taken.

After a detailed analysis of the above figures, we can deduce

that in this scenario, although more IUs will produce more

interferences, they can still reduce more transmission delay

in total. Our DGPA-SC caching strategy is proven to be

an outstanding way to ensure the accuracy rate, and it can

improve the throughput of the whole system.

V. CONCLUSION

In this paper, we proposed a DGPA-SC algorithm to solve

the cache placement problem in D2D underlaying cellular net-

works. In the process of learning, we combined the characters

of social network to solve some practical issues, such as the

selfishness of the users. Simulation results showed our DGPA-

SC algorithm has fast convergence speed compared with the

Q-learning and obvious advantages in decreasing transmission

delay compared with other caching strategies. We concluded

that our algorithm is more suitable for high density district.
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