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Abstract—We study the design of network codes for M -source
N -relay (M − N − 1) wireless networks over slow-fading chan-
nels. Binary frame-wise network coding (BFNC) based on
cyclic-shifting matrices is developed to achieve full diversity and
good coding gain. We develop a criterion in the context of BFNC
that if satisfied guarantees to achieve full diversity gain. Based on
this criterion, we propose an algorithm to design low-complexity
encoders for a BFNC scheme by exploiting quasi-cyclic low-
density parity-check (LDPC) code structures. We also design prac-
tical decoders based on the belief propagation decoding principle
with a focus on large block lengths. Numerical results demonstrate
that our BFNC schemes have substantial benefits over previous
complex field and Galois field network coding schemes in the
sense that our BFNC schemes can achieve full diversity gain and
high coding gain for arbitrary block lengths with low encod-
ing/decoding complexity.

Index Terms—Belief propagation (BP) decoding, low-density
parity-check (LDPC) code, multiple-source multiple-relay net-
work, network coding (NC), quasi-cyclic (QC) matrix, slow-fading
channel.

I. INTRODUCTION

IN RELAYING networks, one or more intermediate relaying
nodes are utilized to help the sources transmit informa-

tion to the destinations. Relaying networks have been studied
for decades [1]. In the last decade, the application of relays
has become an efficient technique to combat channel fading
and improve system throughput in practical wireless networks
[2]–[8]. By allowing information processing in the intermediate
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nodes, network coding (NC) schemes originally proposed for
computer networks have been proved to achieve network mul-
ticast capacity bounds [9]. Recently, how to leverage NC in
wireless relaying networks to enhance the achievable rates has
drawn increasing interest [10]–[16].

Various NC schemes based on the decode-and-forward (DF)
protocol have been proposed for multiple-source, multiple-
relay, and one-destination wireless systems (M − N − 1 relay-
ing networks) to combat slow-fading channels. There are two
main classes of NC schemes with DF protocol. One is complex
field NC (CFNC) [17], [18], where the frames of the sources are
superimposed in a symbol-wise manner at the relay to generate
a network-coded frame. Here, the symbol-wise manner means
that the ith symbol in the network-coded frame is generated by
superimposing the ith symbols of all the sources’ frames, and
it is independent on the other symbols of the sources. The other
type of NC is Galois field NC (GFNC) [19]–[21], where the
frames of the sources are operated in a Galois field symbol-wise
manner at the relay. Compared with the M − N − 1 relaying
networks without NC schemes, networks with either the CFNC
schemes [17] or the GFNC schemes [19] can achieve higher
rates without reducing the full diversity.

However, there are some limitations of the existing CFNC
and GFNC schemes. First, in the case that the network size (i.e.,
M and N ) and the frame length (i.e., the number of symbols or
Galois filed elements in a frame) are large, we need to choose
large space–time matrices (in CFNC) or a large size of the
Galois fields (in GFNC). Therefore, the encoding complexity
of the CFNC and GFNC schemes will significantly increase.
Second, in both CFNC and GFNC schemes, the frames of
the sources are network coded in a symbol-wise manner at
the relay. Here, symbol-wise manner means that these frames
are first aligned and then operated across the ith (i = 0, . . . , l,
where l is the frame length) symbols of all the frames. There-
fore, there is no connection between the ith symbol of one
source and the jth symbol (j �= i) of the other source. Due
to these symbol level operations, the destination cannot jointly
decode the frames from all the sources and the relays. Hence,
when the frame length becomes large, the symbol-wise NC
limits the coding gain. Finally, to achieve better coding gain,
maximum likelihood (ML) decoding is used in both CFNC
and GFNC schemes. However, since the complexity of ML
decoding increases according to 2Ml, ML decoding becomes
impractical when M and l increase (e.g., Ml ≥ 30).
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These observations motivate us to consider full diversity
binary frame-wise NC (BFNC) schemes with a lower encoding/
decoding complexity in M − N − 1 systems over a slow-
fading channel. In the BFNC schemes, the frame-wise opera-
tion means that the ith symbol in the network-coded frame can
be generated by the binary field addition of arbitrary symbols
from all the sources. We note that in [22], full diversity achiev-
ing NC schemes are proposed based on root-check (RC) low-
density parity-check codes (LDPC) for the 2-1-1 network over
slow-fading channels. In the schemes of [22], each network-
coded digit at the relay is generated by the binary field addition
of arbitrary digits from the sources (according to an RC-LDPC
code), leading to full diversity in the 2-1-1 network. However,
the schemes of [22] cannot achieve full diversity in the gen-
eral M − N − 1 network due to the structure constraint of
RC-LDPC codes. This structure constraint is that the parity
check matrix must contain a fixed number of identity subma-
trices to construct the RCs needed to protect the information
bits from the fading channel. Due to this constraint, we cannot
generate enough RCs to protect every information bit from the
fading channel in the general M − N − 1 network. In [23],
LDPC-based NC schemes are designed for the M − N − 1
network with fast-fading channels. The NC schemes in [23]
are designed to achieve a high coding gain. However, [23]
demonstrates that the network schemes are not designed to
achieve the full diversity of the network.

Based on the preceding discussions, we can see that hitherto
there exists no binary code design that achieves full diversity
in a general M − N − 1 network while still achieving high
coding gain and low encoding/decoding complexity with large
code length. It is the design of such a code that we address
in this paper. Our key insight is the design of NC schemes
implemented using quasi-cyclic (QC) LDPC codes with the
additional constraint that the parity check matrices of the
QC-LDPC codes are designed to achieve full diversity for a
general M − N − 1 network with arbitrary block lengths. We
note that the QC vector can be seen as a symbol of Galois
field, and therefore, it seems that our BFNC can be derived
from GFNC. However, the GFNC schemes are not optimized
for belief propagation (BP) decoding. In addition, due to the
complexity constraint, it is very difficult to jointly decode (by
ML decoding) a long codeword based on GFNC. On the other
hand, by using our algorithms, we can optimize the degree
distributions of our BFNC schemes, which we will show leads
to high coding gain, low complexity, and full diversity under
BP decoding.

In this paper, we first investigate the full diversity-achieving
criterion by treating the BFNC schemes as frame-wise cyclic-
shift channel codes. We prove that the criterion can be applied
to BFNC schemes with both ML and BP decoding. Then,
based on the criterion, we propose an algorithm to design the
low-complexity encoders of BFNC schemes by exploiting the
parity check matrices of QC-LDPC codes, i.e., QC matrices.
Finally, we focus on large block lengths and design practical
decoders based on the BP decoding principle. Our codes have
the following advantages: 1) The proposed BFNC schemes can
be linearly encoded and easily extended to large block lengths.
2) In terms of decoding performance and complexity, for small

Fig. 1. System model of the M − N − 1 relaying network.

block lengths, the ML decoder can be used to achieve full
diversity. For large block lengths, the proposed BFNC schemes
can still achieve full diversity and good coding gain due to the
joint decoding of the frames from the sources and the relays by
a modified BP decoder (MBP) composed of two concatenated
BP decoders.

This paper is organized as follows. Section II sets up the
system model. Section III explores the design criterion for the
BFNC schemes that can achieve full diversity with either
the ML decoder or the BP decoder. Section IV investigates
the efficient encoding BFNC schemes based on the QC-LDPC
code structures according to the criterions. Section V proposes
an MBP that is efficient for large block lengths. Section VI
provides the simulation results.

II. SYSTEM MODEL AND PRELIMINARIES

Fig. 1 shows an M − N − 1 relaying network, where M
sources, i.e., s1, . . . , sM , transmit the information frames to
their common destination d with the help of N half-duplexing
relays r1, . . . , rN . Suppose that all transmitting nodes access
the channels using time-division multiple access and all the
channels are of frequency-nonselective slow fading. During a
block of length lblock, there are two transmission phases. In
the first phase, the sources s1, . . . , sM take turns to broadcast
their frames to the relays and the destination with the frame
length of l symbols. Note that inclusion of channel coding at
the sources will lead to additional coding gain at the cost of
additional complexity. Such additional coding can be included
in our schemes in a straightforward manner. However, note that
we do not consider the joint optimization of channel codes
and NC in this paper (see [24] and [25] for more details on
the joint design of channel codes and NC). Our main focus
is to design network codes to provide both network diversity
and coding gain. Therefore, we will not consider channel
coding at sources. Each relay tries to decode the information
of all sources and encode the sources’ information to parity
check frames by an NC scheme. Here, we assume that each
relay generates a parity check frame of length l. In the sec-
ond phase, the relays r1, . . . , rN take turns to forward the
network-coded frames to the destination, and all sources keep
silent. Thus, the whole block length is lblock = (M + N)l.
After the second phase, the destination decodes the informa-
tion of the sources by combining the received frames of the
two phases.
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In [19], it is shown that a GFNC scheme can first be designed
to achieve full diversity under the assumption that the source-to-
relay channels are error free and the source-to-destination and
relay-to-destination channels are Rayleigh distributed. Then,
they proved that this GFNC scheme can still achieve full
diversity when the source-to-relay channels are changed to
Rayleigh fading channels by analyzing various error patterns in
the source-to-relay channels. Similarly, in [17], it is shown that
the design methodology of CFNC schemes can also follow the
same way. In this paper, we design the full diversity-achieving
BFNC schemes based on the assumption that the source-to-
relay channels are error free. Note that this assumption does
not change the NC design method in achieving full diversity
of the proposed coding scheme, which is verified both in our
simulations and in the analysis of [19]. Specifically, if a relay
can decode only some sources’ messages, only these decoded
messages participate in the NC strategy. We denote the channel
coefficient between the mth source sm, m = 1, . . . ,M and the
destination as �m, and the channel coefficient between the nth
relay rn, n = 1, . . . , N and the destination as hn. We assume
that all channel magnitudes |�m| and |hn| are independent iden-
tically distributed (i.i.d.) Rayleigh random variables with zero
mean and unit variance. All channel coefficients are randomly
distributed, but they remain constant for at least one block
length lblock = (M + N)l.

The frames of all transmitting nodes are binary phase-
shift keying (BPSK) modulated. We denote bsm

=
[bsm,1, . . . , bsm,l]T as the information bit vector of sm

and xsm
= [xsm,1, . . . , xsm,l]T as the transmitting frame

after modulation, where the superscript T represents the
transpose of a vector. All symbols transmitted by each source
are uniform i.i.d. We denote brn

= [brn,1, . . . , brn,lr ]
T as

the network-coded bit vector of rn, which is generated
based on the frames from the sources by a BFNC scheme.
Correspondingly, the modulated frame transmitted by rn is
xrn

= [xrn,1, . . . , xrn,lr ]
T . In the BPSK modulation, we have

xsm
= (−1)bsm and xrn

= (−1)brn . We suppose that the
average power of the transmitted symbols at both the sources
and the relays is the same and denoted as P . The additive
channel noise at the destination receiver is i.i.d. Gaussian
distributed with variance σ2. Therefore, the average signal-to-

noise ratio is defined as ρ
Δ= P/σ2. During a block period, we

denote y1m as the received frame from sm in the first phase and
y2n as the received frame from rn in the second phase. Then,
we have y1m = �mxsm

+ v1m and y2n = hnxrn
+ v2n,

where v1m and v2n are the two vectors of noise samples.
We investigate the instantaneous mutual information of the

network in a block period. Since the source-to-relay channels
are assumed error free, the minimum cut-set of the network is
determined by the source-to-destination channels and the relay-
to-destination channels. We calculate the mutual information
based on Gaussian signaling. Note that we use Gaussian signals
to derive a lower bound on the outage probability for BPSK.
This lower bound leads to the same diversity gain achieved
using BPSK. We focus on the mth source sm. The mutual
information between sm and the destination on the sm-to-d
channel is log(1 + |�m|2ρ). In addition, according to the outage

probability analysis in [18], the information transmitted by the
N relays can be averaged on the M sources. This is because
the NC at the relays is randomly constructed. Then, the mutual
information for sm, which is contributed by the relays, is writ-
ten as (1/M)

∑N
n=1 log(1 + |hn|2ρ). The mutual information

between sm and the destination can be written as

Ism

BFNC =
1

1 + N
M

×
(

log
(
1 + |�m|2ρ

)
+

1
M

N∑
n=1

log
(
1 + |hn|2ρ

))
. (1)

Note that in (1), 1 + N/M in the denominator represents the
effective number of frames allocated to the source sm, where
N/M represents the effective number of frames transmitted by
the relays for sm.

In the BFNC schemes, the network-coded frames transmitted
by the N relays can be seen as the parity check frames for
the M sources. Therefore, the transmission rate of each block
is R = M/(M + N). Since the N parity check frames are
shared by the M sources, the transmission rate of each source
keeps the same value R. Given the transmission rate R and the
channel realization h = [�1, . . . , �M , h1, . . . , hN ]T in a block

period, the outage probability of sm is defined as Pr(Osm
) Δ=

Pr(Ism

BFNC < R|h), where Osm
represents the outage event

of sm. Thus, the outage probability of the network can be
calculated as Po = Pr(Os1 ∪ · · · ∪ OsM

), which can be seen
as the lower bound of the block error probability (BLEP)

Pe. We define the diversity gain as λ
Δ= − lim

ρ→∞
log Pe/ log ρ.

According to [19], since the information of each source is
transmitted in N + 1 independent channels to the destination,
the maximum diversity gain of the M − N − 1 network is
λ = N + 1.

III. FULL DIVERSITY ACHIEVING CRITERION

FOR BINARY FRAME-WISE NETWORK CODING SCHEMES

In this section, we will design the BFNC schemes that can
achieve full diversity with either the ML decoder or the BP
decoder at the destination.

A. BFNC Design Criterion With ML Decoder

Let us denote by x the signal frames transmitted
by all sources and the relays. Therefore, we have x =
[xT

s1
, . . . ,xT

sM
,xT

r1
, . . . ,xT

rN
]T . Note that in [26], the bounds

of BLEP of a network-coded multiuser system have been well
developed. However, in this paper, we mainly focus on the
code design to achieve full diversity gain. Therefore, we study
the pairwise error probability (PEP), i.e., P (x → x̂), of the
network, which is defined as the average error probability
of the event that a block x is decoded into another block
x̂ = [x̂T

s1
, . . . , x̂T

sM
, x̂T

r1
, . . . , x̂T

rN
]T with the ML decoder. To

investigate the diversity gain of the M − N − 1 relaying net-
work, we first derive the expression of PEP shown in the
following lemma.
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Lemma 1: When ρ is large enough, the PEP of the M−N−1
relaying network with ML decoder is

P (x → x̂) =
1
2

· 1 · 3 · · · (2M+2N−1) · 23(M+N)

2 · 4 · · · (2M+2N)
M∏

m=1
(1+‖usm

‖2ρ) ·
N∏

n=1
(1+‖urn

‖2ρ)

(2)

where usm
= 1/

√
P (xsm

− x̂sm
), m = 1, . . . ,M , and urn

=
1/
√

P (xrn
− x̂rn

), n = 1, . . . , N . The Frobenius two-norm
‖z‖ of a vector z = [z1, . . . , zl]T is calculated as ‖z‖ =√

z2
1 + · · · + z2

l .
Proof: See Appendix A.

We define the frame-wise Hamming distance of two blocks
x and x̂ as the number of different frames (e.g., xsm

�= x̂sm
or

xrn
�= x̂rn

) between the two blocks. From Lemma 1, the diver-
sity gain of the M − N − 1 relaying network is determined by
the minimum frame-wise Hamming distance of arbitrary two
blocks x and x̂. For a conventional bit-wise BFNC scheme
[10], since each network coded bit at a relay is XORed in
bit-wise fashion, all relays generate the same network-coded
frame as

∑M
m=1 ⊕bsm

= bs1 ⊕ bs2 ⊕ · · · ⊕ bsM
, where

∑
⊕

represents the XOR operation among multiple bit frames. We
can see that in the conventional bit-wise BFNC scheme, the
minimum frame-wise Hamming distance of any two blocks is
two. Therefore, the diversity gain of the conventional BFNC
scheme in the M − N − 1 relaying network is two regardless
the number of relays in the network. To achieve full diversity,
i.e., (N + 1)-order diversity, in the M − N − 1 relaying net-
work, we consider the frame-wise BFNC schemes. In these
schemes, the network-coded frame at the relay rn, i.e., brn

,
is generated to satisfy Hrn

brn
=

∑M
m=1 ⊕Hsm,nbsm

, where
Hrn

, Hs1,n, . . . ,HsM ,n are all l × l binary matrices corre-
sponding to parity-check submatrices for the network codeword
at the relay rn. Let us define the entire network codeword as
b = [bT

s1
, . . . , bT

sM
, bT

r1
, . . . , bT

rN
]T . The parity check matrix of

the network code for the M sources and the N relays with frame
length l for each transmission is denoted by an Nl × (M + N)l
binary matrix H given by

H =

⎡⎢⎣
Hs1,1 Hs2,1 · · · HsM ,1 Hr1 O · · · O
Hs1,2 Hs2,2 · · · HsM ,2 O Hr2 · · · O

· · · · · ·
Hs1,N Hs2,N · · · HsM ,N O O · · · HrN

⎤⎥⎦
(3)

with O representing the l × l zero matrix. Each BFNC scheme
corresponds to a particular binary matrix H in (3). We call
matrix H the parity check matrix of a BFNC scheme. Obvi-
ously, we have Hb = o, where o represents the zero vector of
length lblock.

We rewrite H in (3) as

H = [H1, . . . ,HM ,HM+1, . . . ,HM+N ] (4)

where Hm = [Hsm,1, . . . ,Hsm,N ]T , m = 1, . . . ,M , and
HM+1 =[Hr1 ,O, . . . ,O]T, . . . ,HM+N =[O,O, . . . ,HrN ]T .

The size of each matrix of H1, . . . ,HM ,HM+1, . . . ,HM+N

is Nl × l. Consider a matrix A that is constructed in
the following manner: We randomly choose N matrices,
e.g., H(1),H(2), . . . ,H(N), from the M + N matrices
H1, . . . ,HM+N . We construct A based on the N selected
matrices as A = [H(1),H(2), . . . ,H(N)]. Therefore, A is a
square matrix, and its size is Nl × Nl. The following theorem
provides a design criterion of H , by which the BFNC scheme
can achieve (N + 1)-order diversity with the ML decoder.

Theorem 1: The M − N − 1 relaying network with ML
decoder can achieve (N + 1)-order diversity if all the columns
of the matrix A are linearly independent.

Proof: See Appendix B.
Another way we state Theorem 1 is the M − N − 1 relaying

network with ML decoder can achieve (N + 1)-order diversity
if all the columns in any arbitrary N matrices selected from
H1, . . . ,HM+N are linearly independent. Theorem 1 pro-
vides a design criterion for the full diversity-achieving BFNC
schemes with ML decoders. In the following, we call this
criterion the linearly independent criterion (LIC).

B. BFNC Design Criterion With BP Decoder

When the block length becomes large, the ML decoder has a
high complexity. To reduce the decoding complexity, we resort
to iterative BP decoding algorithms. In our BFNC schemes, we
may also design H in (3) as an LDPC matrix that satisfies
the LIC. In this case, iterative BP decoding can be applied to
recover the information from the M sources. We now design
the full diversity-achieving BFNC schemes for the M − N − 1
relaying network with a BP decoder. We design the BFNC
schemes by borrowing the concept of RC-LDPC codes. Recall
that the RC-LDPC codes are designed to achieve full diversity
for block fading channels [22]. To achieve full diversity under
BP decoder, RC-LDPC codes are intentionally constructed
to ensure that each information digit is connected (by the
RCs) to the digits transmitted from all the other channels.
In such a way, all the information bits can receive extrinsic
mutual information from other channels under BP decoding and
thus achieve full diversity. This process is known as diversity
evolution [22].

Note that 1) to achieve (N + 1)-order diversity in the net-
work, the destination needs to recover the source’s frames in
situations where N channels are in deep fading, and 2) the des-
tination knows the coefficients of all M source-to-destination
channels and all N relay-to-destination channels by channel
estimation. Accordingly, we separate the M + N channels as
two groups. One group is composed of M good channels, i.e.,
M channels with the highest channel gains, and the other group
is composed of N bad channels, i.e., N channels with the
lowest channel gains. Hopefully, the information digits of N
bad channels are root checked by M good channels. Without
loss of generality, let us consider a channel realization that the
matrices H1, . . . ,HN are related to the N frames (denoted as
b1, . . . , bN ) that are transmitted through the N bad channels.
We also suppose that the matrices HN+1, . . . ,HN+M are
related to the M bit frames (denoted as bN+1, . . . , bN+M ) that
are transmitted through the M good channels. If the columns
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in H1, . . . ,HN are constructed to be linearly independent, we
can transfer the matrix H to H ′ = [INl×NlH̃] by Gaussian
elimination, where INl×Nl is an Nl × Nl identity matrix,
and H̃ is an Nl × Ml binary matrix. Since H ′ is derived
from H by Gaussian elimination, both H and H ′ are the
parity check matrices of the transmitted bit blocks such that
Hb = H ′b = o.

According to the concept of RC-LDPC codes, in the parity
check matrix H ′, all bits transmitted in the N bad channels
(corresponding to the identical matrix I in H ′) can obtain
the extrinsic mutual information from the M good channels
(corresponding to the submatrix H̃ in H ′) with one iteration
of the BP decoder. Thus, all bits in a block are equivalently
transmitted in the M good channels, and the network code
achieves (N + 1)-order diversity based on the diversity evolu-
tion of the RC-LDPC codes. Here, we call H ′ the RC-LDPC
matrix for this channel realization. Note that the N bad chan-
nels are randomly distributed in all the source-to-destination
channels and all the relay-to-destination channels for different
transmission blocks. Therefore, to achieve full diversity with
a BP decoder, all the columns in any arbitrary N matrices
selected from H1, . . . ,HM+N should be linearly independent.
For different channel realizations, we need to obtain different
RC-LDPC matrices H ′ at the destination for the BP decoder to
obtain (N + 1)-order diversity.

We note that the criterion to achieve full diversity with
the ML and the BP decoding are the same, i.e., LIC can be
utilized to design the diversity-achieving BFNC schemes with
either the ML or the BP decoders. For the BFNC schemes
with BP decoders, we need to transfer the parity check matrix
H according to the channel conditions to obtain the RC-
LDPC structure H ′. In Section V, we will discuss in de-
tail how to design MBPs to achieve full diversity and good
coding gain.

IV. LOW-COMPLEXITY BINARY FRAME-WISE NETWORK

CODING ENCODER DESIGN BASED ON

QUASI-CYCLIC MATRICES

From an encoding complexity perspective, complex field op-
erations in the CFNC schemes and Galois field operations in the
GFNC schemes are utilized to generate network-coded symbols
at the relays. These types of operations are of high encoding
complexity if M , N , and frame length l are large. Specifically,
in a CFNC scheme, there are Ml complex field multiplication
operations and (M − 1)l complex field addition operations to
generate a network-coded frame at each relay. Therefore, there
are in total MNl complex field multiplication operations and
(M − 1)Nl complex field addition operations for the encoding
process of a CFNC scheme. In a GFNC scheme, if we view a
frame as a symbol from GF (2q) (1 ≤ q ≤ l), then there are in
total MN(l/q) multiplication operations and (M − 1)N(l/q)
addition operations over GF (2q).

For BFNC, we will design the matrix H based on the
parity check matrices of QC-LDPC codes, i.e., QC matrices,
to satisfy the LIC. The reasons that we choose QC matrices are
as follows. First, QC matrices are half deterministic. Therefore,

we can design the matrices that satisfy the LIC rather than via
an exhaustive search. Second, QC-LDPC code structures are
binary and enable linear encoding at the relays, which offers a
low-complexity encoding solution. A QC matrix is composed
of submatrices that are either zero matrices or circulant permu-
tation matrices. Since QC matrices are designed to be sparse,
the encoding process of a BFNC scheme averagely has MNl
multiplication operations and (M − 1)Nl XOR operations over
the binary field. We can see that the encoding complexity of
BFNC is less than that of CFNC. In addition, note that one
multiplication operation over GF (2q) is generally composed
of (q3 + q2) multiplication operations and (q3 − q) XOR oper-
ations over the binary field, and one addition operation over
GF (2q) corresponds to q XOR operations over the binary
field [28]. Thus, in a GFNC scheme, there are MNl(q2 + q)
multiplication operations and MNl(q2 − 1) + (M − 1)Nl =
MNlq2 − Nl XOR operations over the binary field. Compared
with the GFNC schemes, the BFNC schemes have a lower
encoding complexity.

According to [29], we denote I l(α) as the circulant permuta-
tion matrix that circularly shifts the l × l identity matrix to the
right by α times for any non-negative integer α. For example,
if we set l = 3 and α = 2, then I3(2) = [0 0 1; 1 0 0; 0 1 0]. In
addition, we denote I l(0) as an l × l identity matrix and I l(∞)
as an l × l zero matrix. To turn the matrix H to a QC matrix,
we replace its submatrices, e.g., Hsm,n, Hrn

, in (3) with either
circulant permutation matrices or square QC matrices. If we
put the circulant permutation matrices into the matrix H in (3),
then we have Hsm,n = I l(αnm), Hrn

= I l(αn), and

H=

⎡⎢⎣
I l(α11) · · · I l(α1M ) I l(α1) I l(∞) · · · I l(∞)
I l(α21) · · · I l(α2M ) I l(∞) I l(α2) · · · I l(∞)

· · · · · ·
I l(αN1) · · · I l(αNM ) I l(∞) I l(∞) · · · I l(αN )

⎤⎥⎦.

(5)

In (5), the numbers αn are positive integers, and αnm are either
positive integers or ∞. In addition, we can set Hsm,n and
Hrn

as the square QC matrices. For example, Hsm,n can be
composed of a combination of four l/2 × l/2 circulant permu-
tation matrices or l/2 × l/2 zero matrices such that Hsm,n =
[I l/2(0)I l/2(1); I l/2(2)I l/2(∞)]. In general, Hsm,n can be
composed of a total k2 of l/k × l/k circulant permutation
matrices, where l is an integer multiple of k.

In matrix H , by replacing a zero matrix with 0 and replacing
a non-zero circulant matrix with 1, we obtain a basic binary
matrix Ĥ . If Hsm,n and Hrn

are the circulant permutation ma-
trices, then Ĥ is an N × (M + N) matrix. Moreover, if both
Hsm,n and Hrn

are composed of k × k circulant permutation
matrices of size l/k × l/k, then Ĥ is an Nk × (M + N)k
matrix. According to [29], if we want to design a matrix H =
[H1, . . . ,HM+N ] to satisfy the LIC, a sufficient condition is
that we need to design its basic matrix Ĥ = [Ĥ1, . . . , ĤM+N ]
so that the columns in arbitrary N of matrices Ĥ1, . . . , ĤM+N

are linearly independent. We call this sufficient condition as
the basic matrix LIC (BLIC). Therefore, in the QC matrix-
based BFNC scheme design, we construct a basic matrix Ĥ
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TABLE I
DESCRIPTION OF ALGORITHM 1 THAT IS USED TO GENERATE

A SERIES OF FULL COLUMN RANK BINARY MATRICES

that satisfies the BLIC instead of searching for a matrix H
that satisfies the LIC. For simplicity, we first consider the basic
matrix design for a M − 2 − 1 relaying network. Then, we
extend the design to the general M − N − 1 relaying network.

A. Basic Matrix Design for the M − 2 − 1 Relaying Network

There are two steps to construct a basic matrix Ĥ =
[Ĥ1, . . . , ĤM+2] so that all the columns in any arbitrary two
matrices selected from Ĥ1, . . . , ĤM+2 are linearly indepen-
dent. First, we need to make sure that the columns inside
each Ĥk, k = 1, . . . ,M + 2 are linearly independent, i.e., each
matrix Ĥk is of full column rank.

In Table I, we present Algorithm 1 to generate a series of full
column rank binary matrices G2,k, k = 1, . . . , 2υ − 1, where
υ is defined in Algorithm 1. We have two lemmas based on
Algorithm 1 as follows.

Lemma 2: Matrices G2,k, k = 1, . . . , 2υ − 1, are 2υ − 1
unique matrices, with the columns in each G2,k being linearly
independent.

Proof: See Appendix C.
Lemma 3: The sequence of matrices G2,1, . . . ,G2,2υ−1 is

closed for addition over GF(2), i.e., for arbitrary i and j (i, j ∈
{1, . . . , 2υ − 1} and i �= j), there exists q ∈ {1, . . . , 2υ − 1}
such that G2,i ⊕ G2,j = G2,q .

Proof: See Appendix D.
In Table II we present Algorithm 2 to generate a basic matrix

Ĥ based on Algorithm 1.
Theorem 2: If we construct a basic matrix Ĥ = [Ĥ1, . . . ,

ĤM+2] by Algorithm 2, then all the columns in every two ma-
trices selected from Ĥ1, . . . , ĤM+2 are linearly independent,
i.e., the basic matrix Ĥ satisfies the BLIC.

Proof: See Appendix E.
By using Algorithm 2, we can generate a basic matrix

as Ĥ = [Ĥ1, . . . , Ĥ2υ+1], where 2υ + 1 = M + 2. That is,
Algorithm 2 can support an M − 2 − 1 relaying network with
M ≤ 2υ − 1 to achieve full diversity. We use the following
example to illustrate Algorithm 2. We choose υ = 3, and then,

TABLE II
DESCRIPTION OF ALGORITHM 2 THAT IS USED TO GENERATE

BASIC MATRICES FOR M -SOURCE, TWO-RELAY NETWORKS

each submatrix in (3) is composed of nine l/3 × l/3 circulant
permutation matrices or an l/3 × l/3 zero matrix. Here, Hrn

and Hsm,n in (3) can be written as

Hrn
=

⎡⎣ I l/3(αn,1) I l/3(αn,2) I l/3(αn,3)
I l/3(αn,4) I l/3(αn,5) I l/3(αn,6)
I l/3(αn,7) I l/3(αn,8) I l/3(αn,9)

⎤⎦

Hsm,n =

⎡⎣ I l/3(αnm,1) I l/3(αnm,2) I l/3(αnm,3)
I l/3(αnm,4) I l/3(αnm,5) I l/3(αnm,6)
I l/3(αnm,7) I l/3(αnm,8) I l/3(αnm,9)

⎤⎦ (6)

where α with different subscripts represent non-negative in-
tegers. First, we construct the following 2υ + 1 = 9 binary
matrices based on Algorithm 2. These nine binary matrices
Bk, k = 1, . . . , 9 are shown in Fig. 2. Then, we construct
Ĥ by obtaining Ĥk from Bk. We obtain Ĥk by randomly
choosing three linearly independent columns of Bk. Therefore,
the columns in any two different matrices of Ĥ1, . . . , Ĥ9

are linearly independent, and Ĥ satisfies the BLIC. We can
see that by choosing υ = 3, Algorithm 2 can support the net-
works to achieve full diversity (third order) when M + 2 ≤ 9,
i.e., M ≤ 7.

B. Basic Matrix Design for the M − N − 1 Relaying Network

We now consider general M − N − 1 networks with M > 2.
Note that in the M − N − 1 relaying network, the BLIC for the
basic matrix Ĥ = [Ĥ1, . . . , ĤM+N ] is that all the columns in
any arbitrary N matrices selected from Ĥ1, . . . , ĤM+N are
linearly independent. To generate a basic matrix that satisfies
the BLIC, we have Algorithm 3 (see Table III). Based on this
algorithm, we have a theorem as follows.
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Fig. 2. Nine binary matrices generated by using Algorithm 2.

TABLE III
DESCRIPTION OF ALGORITHM 3 THAT IS USED TO GENERATE BASIC

MATRICES FOR M -SOURCE, N -RELAY NETWORKS (N > 2)

Theorem 3: If we construct a basic matrix Ĥ =
[Ĥ1, . . . , ĤM+N ] by Algorithm 3, then all the columns
in any arbitrary N matrices selected from Ĥ1, . . . , ĤM+N

are linearly independent, and the basic matrix Ĥ satisfies
the BLIC.

Proof: See Appendix F.
We can see that the BFNC scheme proposed by Algorithm 3

can support an M − N − 1 relaying network with M ≤ 2υ − 1
to achieve (N + 1)-order diversity.

By using Algorithms 2 and 3, we can construct the codes
that satisfy the LIC. In fact, the LIC is equivalent to the design
criterion of maximum distance separable (MDS) channel codes.
However, the conventional MDS codes may not be suitable for
BP decoding. Different from the conventional constructions of
MDS codes, our design of BFNC using Algorithms 2 and 3 does
not generate a specific code but provides a group of linearly
independent vectors. As we will show in the next section, from
the vectors generated by these algorithms, we can search a
network code with both the optimal degree distribution and
MDS property. Therefore, when the code length is large, our
BFNC schemes have a good coding gain under BP decoding
while achieving full diversity. This is one of the advantages of
the BFNC schemes compared with the GFNC schemes.

V. MODIFIED BELIEF PROPAGATION DESIGN FOR LARGE

BLOCK LENGTHS

For large block lengths, low encoding complexity is a major
advantage of the BFNC schemes proposed in Section IV. From
a decoding point of view, the BP decoding can be applied to
the proposed BFNC schemes to achieve full diversity, which
has low complexity compared to ML decoding for large block
lengths. As mentioned in Section III, the parity check matrix
H ′ is used to achieve full diversity with a BP decoder. However,
the matrix H ′ generated (through H) by Gaussian elimination
could be a dense matrix, which is not suitable for BP iterative
decoding since it may lead to a poor coding gain. In the
following, we provide an in-depth study on constructing a MBP
for the proposed BFNC schemes to obtain full diversity and
good coding gain.

The MBP consists of two concatenated BP decoders, as
shown in Fig. 3. The first BP decoder receives the channel log-
likelihood ratio (LLR) of the transmitted signals and uses H ′

as the parity check matrix to achieve full diversity. According
to the concept of RC-LDPC codes [22], H ′ can be seen as an
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Fig. 3. Concatenated BP decoders composed by H′ and H. The parity check
matrix H′ is used first to achieve full diversity. Then, the output LLR values
are used as the input of H to achieve more coding gain.

RC-LDPC code. Thus, all variable nodes can achieve full
diversity gain after one iteration of the first BP decoder. The
output LLR values are then used as the input of the second BP
decoder. In this second BP decoder, the parity check matrix H
with a low density is used for multiple-iteration processing so as
to improve the error performance. Therefore, in our MBP, since
H ′ already guarantees full diversity gain, we need to design H
as a good LDPC code to improve the error performance through
multiple iterations under BP decoding.

Recall that by the proposed algorithms in Section IV, we
can generate a series of binary matrices Bk. Based on these
matrices, we randomly generate Ĥ that satisfies the LIC. The
parity check matrix H can be obtained by expanding its basic
matrix Ĥ . We can view H as a protograph LDPC code [30],
and its basic matrix Ĥ as the protograph. In this protograph
LDPC code, the basic matrix Ĥ serves as a blueprint for
constructing H of arbitrary size whose performance can be
predicted by analyzing the protograph (i.e., the basic matrix).
Using the optimization method in [30], we can obtain a desired
H (with a higher threshold) by searching the corresponding
basic matrix Ĥ among all combinations of binary matrices Bk.

VI. NUMERICAL RESULTS

A. BLER and BER Performance With Small Block Lengths

First, we consider two M − 2 − 1 networks, i.e., the 2-2-1
relaying network and the 3-2-1 relaying network, to illustrate
the code design based on the proposed method in this paper.
Small block lengths and perfect source-to-relay channels are
assumed for each network. The frame lengths in the two net-
works are the same, i.e., l = 3, and the block lengths in the
two networks are 12 and 15. For these small block lengths, ML
decoding can be applied to the destination. In networks with
BFNC scheme, we use the basic matrices as the parity check
matrix H . The basic matrices are obtained by Algorithm 2.

Let us take the 2-2-1 relaying network, for example. In the
first step, we obtain the matrix sets Bk, k = 1, . . . , 9, according
to Algorithm 2 for the 2-2-1 relaying networks. In the second
step, we search the submatrices Ĥ1, Ĥ2, Ĥ3, and Ĥ4 from
all the Bk by utilizing density evolution. The matrices Ĥ1,
Ĥ2, Ĥ3, and Ĥ4 construct the basic matrix Ĥ2−2−1 (see
Fig. 4). The matrices Ĥ1, Ĥ2, Ĥ3, and Ĥ4 are applied to the
frames transmitted by s1, s2, r1, and r2, respectively. Following
a similar method, we obtain the basic matrix for the 3-2-1
relaying network. We compare the proposed BFNC scheme
with the GFNC [19] scheme and the CFNC scheme [17] in the
two networks. All the parameters of the GFNC scheme and the

Fig. 4. Basic matrices Ĥ2−2−1 and Ĥ3−3−1 designed for the 2-2-1 relay-
ing network and the 3-3-1 relaying network, respectively. In the 2-2-1 relaying
network, the submatrices Ĥ1, Ĥ2, Ĥ3, and Ĥ4 are applied to the frames
transmitted by s1, s2, r1, and r2, respectively. In the 3-3-1 relaying network,
the submatrices Ĥ1, Ĥ2, Ĥ3, Ĥ4, Ĥ5, and Ĥ6 are applied to the frames
transmitted by s1, s2, s3, r1, r2, and r3, respectively.

CFNC scheme are optimally chosen according to [19] and [17],
respectively.

For the GFNC scheme, we choose the Galois field with eight
elements, i.e., GF(8). At the relay encoder, we map a frame
(three bits) into a Galois field element (or GF symbol) and
then generate the network-coded GF symbols by the GFNC
scheme according to [19]. Specifically, in the 2-2-1 relaying
network, at the first relay, we choose the two GF(8) elements
1 and 1 to combine the GF symbols from the two sources. The
NC process at the first relay can be expressed as xGFNC

r1
=

1 · xs1 � 1 · xs2 , where � represents the plus operation in the
corresponding Galois field. At the second relay, we use the two
GF(8) elements 1 and 2 to combine the frames from the two
sources. The NC process at the second relay can be expressed
as xGFNC

r1
= 1 · xs1 � 2 · xs2 . Similarly, in the 3-2-1 relaying

network, at the first relay the GF(8) vector [1 1 1], and at the
second relay, the GF(8) vector [1 2 3] is utilized to combine
the GF symbols from the three sources. For the CFNC scheme,
space–time codes are applied to the relays. The transmitted
frame by the relay rn, i.e., xCFNC

rn
, is written as xCFNC

rn
=

1/
√

M
∑M

m=1 θn,mxsm
, where the coefficients θn,1, . . . , θn,M

are from a space–time coding matrix. According to [17], we
have θ1,1 = 1, θ1,2 = ej(3π/4), θ2,1 = 1, and θ2,2 = ej(7π/4)

for the 2-2-1 relaying network. In the 3-2-1 relaying network,
we have θ1,1 = 1, θ1,2 = ej(5π/9), θ1,3 = ej(10π/9), θ2,1 = 1,
θ2,2 = ej(11π/9), and θ2,3 = ej(22π/9).

Fig. 5 shows the error probabilities of the 2-2-1 relaying
network with BFNC, CFNC, and GFNC with block length
bblock = 12. Note that the solid black lines represent the block
error probabilities (BLEP) and the dashed black lines repre-
sent the bit error probabilities (BEPs). Fig. 6 shows the error
probabilities of the 3-2-1 relaying network under the three NC
schemes. We can see from Figs. 5 and 6 that all three NC

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on January 11,2021 at 12:11:18 UTC from IEEE Xplore.  Restrictions apply. 



1354 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 3, MARCH 2012

Fig. 5. Error probabilities of the 2-2-1 relaying network under the three NC
schemes. The block length is 12, and the source-to-relay channels are perfect.
An ML decoder is used at the destination. Solid lines represent the block error
probabilities, and dashed lines represent the BEPs.

Fig. 6. Error probabilities for the 3-2-1 relaying network under the three NC
schemes. The block length is 15, and the source-to-relay channels are perfect.
An ML decoder is used at the destination. Solid lines represent block error
probabilities, and dashed lines represent the BEPs.

schemes can achieve full diversity (third-order diversity) in the
2-2-1 and 3-2-1 relaying networks. The BFNC scheme and the
GFNC scheme outperform the CFNC scheme in terms of error
performance. We also find that the BFNC scheme is slightly
better than the GFNC scheme.

Second, we consider the general M − N − 1 relaying net-
works. Without loss of generality, we consider a 3-3-1 relaying
network. Small block length and perfect source-to-relay chan-
nels are assumed for the network. The frame length is l = 3,
and the block length is 18. The ML decoding is applied to
the destination. According to Algorithm 3, we obtain the basic
matrix Ĥ3−3−1 for the 3-3-1 relaying network, as shown in
Fig. 4. Fig. 7 shows the error probabilities of the 3-3-1 relaying
network with BFNC, GFNC, and CFNC. Note that the solid
black lines represent the block error probabilities (BLEP), and
the dashed black lines represent the BEPs. We can see from
Fig. 7 that the BFNC scheme can achieve full diversity (fourth-
order diversity) in the 3-3-1 relaying network. We also found
that the error performance of the BFNC scheme is similar to

Fig. 7. Error probability for the 3-3-1 relaying network under the three NC
schemes. The block length is 18, and the source-to-relay channels are perfect.
An ML decoder is used at the destination. Solid lines represent the BLEP, and
dashed lines represent the BEP.

that of the GFNC scheme. In addition, both BFNC and GFNC
schemes outperform the CFNC scheme.

B. BLER Performance Under Imperfect
Source-to-Relay Channels

We investigate the BFNC, CFNC, and GFNC schemes in
the 2-2-1 network with imperfect source-to-relay channels. As
shown in [17] and [19], the full-diversity achievability of both
GFNC and CFNC is not changed by imperfect source-relay
channels. Utilizing a method similar to that of [17] and [19], we
show that the BFNC scheme can also achieve full diversity in
imperfect source-to-relay channels. Fig. 8 shows the BLEP and
BEP curves of the three NC schemes under imperfect source-
to-relay channels. We assume that the fading coefficients at
all the source-to-relay channels are Rayleigh distributed with
zero mean and unit variance. The additive channel noises at
the relays are Gaussian distributed with variance σ2. We use
the BLEP curve of the BFNC scheme under error-free source-
to-relay channels as a benchmark. We can see that all three
schemes can still achieve full diversity under the imperfect
source-to-relay channels. Both BFNC and GFNC schemes have
around 1.1-dB performance gain relative to the CFNC scheme.

C. BLER Performance With Large Block Lengths

We consider the 2-2-1 relaying network with large block
lengths. We assume that the frame length is l = 300 and the
source-to-relay channels are perfect. Thus, the block length
in the network is lblock = 1200. For the BFNC scheme with
a block length of 1200, we generate the 600 × 1200 parity
check matrix H using our proposed algorithms. The MBP is
applied to the destination. Fig. 9 shows the BLEP of the 2-2-1
relaying network with the BFNC scheme. In Fig. 9, we compare
the proposed MBP with the conventional BP decoder, which
is based on the parity check matrix H . We consider 0, 4, and
100 iterations of the parity check matrix H in the MBP decoder
and 100 iterations in the BP decoder. Note that in Fig. 9, the
“0 iteration” of the parity check matrix H means that we do
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Fig. 8. Block error probabilities for the 2-2-1 relaying network under the three
NC schemes. Imperfect source-to-relay channels are considered. Block length
is 12. An ML decoder is used at the destination.

Fig. 9. Block error probabilities for the 2-2-1 relaying network under the
BFNC and GFNC schemes. The block length is 1200. The proposed BP decoder
is used at the destination in the BFNC scheme, and the ML decoder is used in
the GFNC scheme.

not use H for decoding. In the case of “0 iteration,” we make
the decision based on the output LLR of the diversity achieving
decoder H ′. From Fig. 9, we can see that due to the RC-LDPC
matrix H ′ and its corresponding diversity evolution, the MBP
decoder with “0 iteration,” “4 iterations,” and “100 iterations”
can all achieve the full diversity gain (third-order diversity).
The case of “100 iterations” in H facilitates higher coding
gain. We can also see from Fig. 9 that without using H ′ and
diversity evolution, the iterative BP decoder based on H with
“100 iterations” cannot achieve full diversity.

In Fig. 9 the GFNC code is chosen over GF(8), i.e., we
choose two GF(8) elements 1 and 1 to combine the GF symbols
from the two sources at the first relay, and we use two GF(8)
elements 1 and 2 to combine the frames from the two sources at
the second relay. In Fig. 9, the GFNC scheme can achieve full
diversity. However, when compared to the BFNC scheme with
‘MBP’ and “100 iterations,” the coding gain of GFNC is 4-dB
worse.

We can see that in CFNC and GFNC, the complexity of ML
decoding increases according to 2Ml, whereas in BFNC, as

we can use BP decoding, the decoding complexity possesses
a linear complexity in terms of frame length [30]. Therefore,
our BFNC is efficient relative to CFNC and GFNC for large
frame lengths.

VII. CONCLUSION

In this paper, we have studied a binary field NC design
over a multiple-source multiple-relay wireless network over
slow-fading channels. We have discussed a diversity-achieving
criterion for the BFNC schemes with either an ML decoder or a
BP decoder at the destination. Based on this criterion, we then
proposed algorithms that construct low-complexity encoders
based on frame-wise cyclic-shifting matrices, which are then
used to generate our new BFNC schemes. Numerical results
demonstrate that our BFNC schemes outperform previous com-
plex field and GFNC schemes in that our BFNC schemes can
achieve full diversity gain and high coding gain for arbitrary
block lengths with low encoding/decoding complexity.

APPENDIX A
PROOF OF LEMMA 1

We define the received signal vector as y = [yT
11, . . . ,

yT
1M ,yT

21, . . . ,y
T
2N ]T , and we have y = Xdiagh + v, where

Xdiag =diag(xs1 , . . . ,xsM
,xr1 , . . . ,xrN

), h=[�1, . . . , �M ,
h1, . . . , hN ]T and v = [vT

11, . . . ,v
T
1M , vT

21, . . . ,v
T
2N ]T . We de-

fine that X̂diag = diag(x̂s1 , . . . , x̂sM
, x̂r1 , . . . , x̂rN

). In addi-
tion, we denote the decoding power normalized error matrix as
U = 1/

√
P (Xdiag − X̂diag) and the autocorrelation matrix of

v as Fv . According to [27], we obtain the PEP as

P (x→ x̂)=
1
π

π
2∫

0

Eh

{
exp

(
−P

hHUHF−1
v Uh

8 sin2 θ

)}
dθ (7)

where Eh is the mathematical expectation over h. Note that
for a random column vector z with zero mean and auto-
correlation matrix Fz , and a Hermitian matrix H , we have
E{exp(−zHHz)} = 1/det(I + FzH). In (7), we take the
expectation with respect to h and notice that UHU is an
(M + N) × (M + N) Hermitian matrix. Then, we obtain

P (x → x̂) =
1
π

π
2∫

0

1

det
(
I +

(
ρ

8 sin2 θ

)
UHU

) dθ. (8)

When ρ is large, we can replace det(I + (ρ/8 sin2 θ)UHU)
with (ρ/8 sin2 θ)(M+N) det((1/ρ)I + UHU). Since

det
(

1
ρ
I+UHU

)
=

M∏
m=1

(
1
ρ

+‖usm
‖2

)
·

N∏
n=1

(
1
ρ

+‖urn
‖2

)
π
2∫

0

sin2(M+N) θ dθ =
1 · 3 · 5 · · · (2M + 2N − 1)

2 · 4 · 6 · · · (2M + 2N)
· π

2
(9)

we obtain (2) and complete the proof. �
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APPENDIX B
PROOF OF THEOREM 1

We randomly choose two binary blocks generated by H ,

i.e., b = [bT
s1

, . . . , bT
sM

, bT
r1

, . . . , bT
rN

]T and b̂ = [b̂
T

s1
, . . . , b̂

T

sM
,

b̂
T

r1
, . . . , b̂

T

rN
]T . The modulated blocks are x = (−1)b, x̂ =

(−1)b̂. In addition, we have
∑M+N

k=1 ⊕Hk(bsk
⊕ b̂sk

) = o.
To find the minimum distance between the two blocks,

we generate M + N bit vectors as bs1 ⊕ b̂s1 , . . . , bsM
⊕

b̂sM
, br1 ⊕ b̂r1 , . . . , brN

⊕ b̂rN
. If H is so designed that the

columns in any N of matrices H1, . . . ,HM+N are linearly
independent, then among these M + N bit vectors, there
are at least N + 1 non-zero vectors. Correspondingly, there
are at least N + 1 non-zero vectors in xs1 − x̂s1 , . . . ,xsM

−
x̂sM

,xr1 − x̂r1 , . . . ,xrN
− x̂rN

. This means that the mini-
mum frame-wise Hamming distance of arbitrary two blocks x
and x̂ is N + 1. According to Lemma 1, the diversity gain of
the M − N − 1 relaying network can achieve (N + 1)-order
diversity. This concludes the proof. �

APPENDIX C
PROOF OF LEMMA 2

In the second step of Algorithm 1, since υ is chosen to make
f(x) = xv + xv−1 + 1 primitive over GF(2), we can obtain
2υ − 1 different nonzero columns bk, k = 1, . . . , 2υ − 1. From
the third step of Algorithm 1, we can see that each matrix G2,k

possesses at least one column that does not appear in all the
other matrices. Therefore, G2,k are 2υ − 1 unique matrices.

It is clear that the columns in G2,1 are linearly independent.
Then, we focus on G2,2. Let

γ1b2 ⊕ γ2b3 ⊕ · · · ⊕ γυ−1bυ ⊕ γυbυ+1 = o (10)

where γ1, . . . , γυ ∈ {0, 1} are binary coefficients. Since
bυ+1 = b1 ⊕ b2, we can rewrite (10) as

γυb1 ⊕ (γ1 ⊕ γυ)b2 ⊕ γ2b3 ⊕ · · · ⊕ γυ−1bυ = o. (11)

Since b1, . . . , bυ are linearly independent, we have γ1 ⊕ γυ =
γ2 = · · · = γυ = 0, which indicates that γ1 = γ2 = · · · =
γυ = 0. Therefore, the columns in G2,2, i.e., b2, . . . , bυ+1,
are linearly independent. In G2,3, we have the columns
b3, . . . , bυ+2, where bυ+2 = b2 ⊕ b3. Based on the result that
b2, . . . , bυ+1 are linearly independent, we can obtain that
b3, . . . , bυ+2 are linearly independent. By doing this recur-
sively (i.e., we prove the columns in G2,k to be linearly
independent based on the result that the columns in G2,k−1 are
linearly independent), we can finally prove that the columns in
each G2,k, k = 1, . . . , 2υ − 1, are linearly independent. �

APPENDIX D
PROOF OF LEMMA 3

We define a series of matrices D1,D2, . . . ,D2υ−1 as

follows: D1
Δ= [b1, b2, . . . , b2υ−1]T , D2

Δ= [b2, b3, . . . , b2υ−1,

b1]T , . . . ,D2υ−1
Δ=[b2υ−1, b1, b2, . . . , b2υ−2]T . We have D2 =

I2υ−1(1)D1, D3=I2υ−1(2)D1, . . . ,D2υ−1 =I2υ−1(2υ−2)D1,
where the matrix I2υ−1(α), as defined in Section IV, is a
circulant permutation matrix that circularly shifts the (2υ −
1) × (2υ − 1) identity matrix to the right by α times, α ∈
{1, . . . , 2υ − 2}. To prove Lemma 3, we will first prove that
among the matrices set D1,D2, . . . ,D2υ−1, the addition of
any two different matrices over GF(2) is another matrix in this
set, i.e., for arbitrary i and j (i, j ∈ {1, . . . , 2υ − 1} and i �= j),
there exists q ∈ {1, . . . , 2υ − 1} such that Di ⊕ Dj = Dq.

Note that b1, b2, . . . , bυ are υ linearly independent binary
vectors with length equal to or larger than υ. Binary vectors
bυ+1, bυ+2, . . . , b2υ−1 are linear combinations [over GF(2)] of
b1, b2, . . . , bυ based on the primitive GF(2) polynomial f(x) =
xυ + xυ−1 + 1, as described in Algorithm 1. Then, we denote
a length (2υ − 1) binary vector f as the coefficients vector of
f(x), i.e.,

f = [ 0 · · · 0︸ ︷︷ ︸
2υ−υ−2times

1 1 0 · · · 0︸ ︷︷ ︸
υ−2times

1]. (12)

Equation (12) implies that the three “1”s in f are located at
the first position, the υth position, and the (υ + 1)th position
from the right to the left, respectively. By circularly shifting
the coefficients vector f to the left by β times, β = 1, . . . ,
2υ − υ − 2, we obtain 2υ − υ − 2 new binary vectors of length
(2υ − 1), which are denoted as fβ . Note that for each β,
the vector fβ is the coefficients vector of the polynomial
xβf(x). According to Algorithm 1, b1 ⊕ b2 ⊕ bυ+1 = o,
b2 ⊕ b3 ⊕ bυ+2 = o, . . . , b2υ−υ−2 ⊕ b2υ−υ−1 ⊕ b2υ−2 = o,
and b2υ−υ−1 ⊕ b2υ−υ ⊕ b2υ−1 = o, where o is a zero vector.
Correspondingly

f2υ−υ−2D1 = [1 1 0 · · · 0︸ ︷︷ ︸
υ−2times

1 0 · · · 0︸ ︷︷ ︸
2υ−υ−2times

]D1 = oT

f2υ−υ−3D1 = [0 1 1 0 · · · 0︸ ︷︷ ︸
υ−2times

1 0 · · · 0︸ ︷︷ ︸
2υ−υ−3times

]D1 = oT

...
...

...

f1D1 = [ 0 · · · 0︸ ︷︷ ︸
2υ−υ−3times

1 1 0 · · · 0︸ ︷︷ ︸
υ−2times

1 0]D1 = oT

fD1 = [ 0 · · · 0︸ ︷︷ ︸
2υ−υ−2times

1 1 0 · · · 0︸ ︷︷ ︸
υ−2times

1]D1 = oT . (13)

Furthermore, since binary vectors bυ+1, bυ+2, . . . , b2υ−1 are
linear combinations of b1, b2, . . . , bυ over GF(2), the matrix
D1 can be written as D1 = Q[b1, b2, . . . , bυ]T , where Q is a
(2υ − 1) × υ binary coefficient matrix. Since f(x) is primitive,
each bk, k ∈ {1, . . . , 2υ − 1}, is a unique combination of b1,
b2, . . . , bυ. Therefore, all the rows in Q are nonzero and are
different from each other. Note that for a given vector length
υ, we can obtain a total of 2υ − 1 unique nonzero binary
vectors, which constitute all the 2υ − 1 rows of Q. Therefore,
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addition operations among all these 2υ − 1 rows of Q are
closed over GF(2), i.e., the addition of arbitrary two rows over
GF(2) is another row in Q. Hence, for arbitrary i and j (i, j ∈
{1, . . . , 2υ − 1} and i �= j), there exists q ∈ {1, . . . , 2υ − 1}
such that bi ⊕ bj = bq, i.e., bi ⊕ bj ⊕ bq = o.

Based on the triplet {i, j, q}, we construct a polynomial
g(x) = x2υ−i−1 + x2υ−j−1 + x2υ−q−1 over GF(2). We denote
a length (2υ − 1) binary nonzero vector g as the coefficient
vector of g(x). The three “1”s in g are located at the ith
position, the jth position, and the qth position from the left
to the right, respectively. Since bi ⊕ bj ⊕ bq = o, we have
gD1 = oT . Note that g(x) can be written as g(x) = h(x) ·
f(x) + d(x), where h(x) and d(x) are over GF(2), and

h(x) = 0x2υ−2 + · · · + 0x2υ−υ−1 + h2υ−υ−2x
2υ−υ−2

+ h2υ−υ−3x
2υ−υ−3 + · · · + h0

d(x) = 0x2υ−2 + · · · + 0xυ + dυ−1x
υ−1

+ dυ−2x
υ−2 + · · · + d0. (14)

In (14), the coefficients h0, . . . , h2υ−υ−2 ∈ {0, 1} and
d0, . . . , dυ−1 ∈ {0, 1}. We denote the length (2υ − 1)
coefficient vectors of polynomials h(x)f(x) and d(x) as u and
d, respectively. Vectors u, d, and g satisfy u ⊕ d = g. From
(14), the polynomial h(x)f(x) can be written as

h(x)f(x) = h2υ−υ−2x
2υ−υ−2f(x)

+h2υ−υ−3x
2υ−υ−3f(x) + · · · + h0f(x). (15)

Since fβ , β = 1, . . . , 2υ − υ − 2, are the coefficients vectors
of xβf(x), the vector u is a linear combination of f and fβ

over GF(2), i.e.,

u=h2υ−υ−2f2υ−υ−2⊕h2υ−υ−3f2υ−υ−3⊕· · ·⊕h0f . (16)

From (13), we have uD1 = oT , which, combined with the fact
that gD1 = oT , implies that

dD1 =dυ−1b
T
2υ−υ+dυ−2b

T
2υ−υ+1+· · ·+d0b

T
2υ−1 =oT . (17)

Since G2,2υ−υ = [b2υ−υ, . . . , b2υ−1], according to Lemma 2,
the υ vectors b2υ−υ, . . . , b2υ−1 are linearly independent. Then,
we have dυ−1 = · · · = d0 = 0. Therefore, d(x) = 0 and
g(x) = h(x)f(x), i.e., g(x) is divisible by f(x).

By circularly shifting g to the right by p times, p =
1, . . . , 2υ − 2, we obtain another 2υ − 2 vector, which can
be expressed as gI2υ−1(p). For each p, we use the vector
gI2υ−1(p) as the coefficients vector to define the polyno-
mial gp(x). The polynomial gp(x) can be written as gp(x) =
x−pg(x)mod(x2υ−1 + 1). Since both g(x) and (x2υ−1 + 1)
are divisible by the primitive polynomial f(x), each gp(x) is

divisible by f(x), which means that gI2υ−1(p)D1 = oT for
each p. Therefore, we have⎡⎢⎢⎣

g
gI2υ−1(1)

...
gI2υ−1(2υ − 2)

⎤⎥⎥⎦D1 = O (18)

where O is a zero matrix. Note that in (18), the first row is
g, in which the three “1”s are located at the ith position, the
jth position, and the qth position from the left to the right. The
(p + 1)th row in the matrix p = 1, . . . , 2υ − 2 is obtained by
circularly shifting the first row to the right by p times. Therefore⎡⎢⎢⎣

g
gI2υ−1(1)

...
gI2υ−1(2υ − 2)

⎤⎥⎥⎦
= I2υ−1(i − 1) ⊕ I2υ−1(j − 1) ⊕ I2υ−1(q − 1). (19)

We have(
I2υ−1(i−1)⊕I2υ−1(j−1)⊕I2υ−1(q−1)

)
D1 =O. (20)

Since Di = I2υ−1(i − 1)D1, Dj = I2υ−1(j − 1)D1, and
Dq = I2υ−1(q − 1)D1, (20) becomes Di ⊕ Dj ⊕ Dq = O,
i.e., Di ⊕ Dj = Dq. Note that G2,k is formed by using the
first υ columns of the matrix DT

k . Thus, we have G2,i ⊕
G2,j = G2,q . Therefore, we complete the proof. �

APPENDIX E
PROOF OF THEOREM 2

Suppose that Gk = [bk,1, . . . , bk,υ]2υ×υ , k = 1, . . . , 2υ + 1,
where bk,j , j = 1, . . . , υ, is the jth column in Gk. First, ac-
cording to Lemma 2, we can prove that all the columns in each
Gk are linearly independent. In addition, all the columns in the
matrix [G1,Gi], i = 3, . . . , 2υ + 1, are linearly independent.
All the columns in the matrix [G2,Gi], i = 3, . . . , 2υ + 1 are
linearly independent. In the next step, we need to prove that all
the columns in the matrix [Gi1 ,Gi2 ] are linearly independent,
where i1 �= i2, and i1, i2 = 3, . . . , 2υ + 1.

For all the columns from the matrix [Gi1 ,Gi2 ], we let

υ∑
j=1

⊕βjbi1,j ⊕
υ∑

j′=1

⊕βυ+j′bi2,j′ = o (21)

where the coefficients β1, . . . , β2υ are binary numbers. Then,
we have

υ∑
j=1

⊕(βj ⊕ βυ+j)b1,j ⊕ F (b2,1, . . . , b2,υ) = o (22)

where the function F (b2,1, . . . , b2,2υ − 1) is a linear com-
bination of vectors b2,1, . . . , b2,2υ−1 in the binary field.
Note that F (b2,1, . . . , b2,2υ − 1) is linearly independent on

Authorized licensed use limited to: NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY. Downloaded on January 11,2021 at 12:11:18 UTC from IEEE Xplore.  Restrictions apply. 



1358 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 3, MARCH 2012

b1,1, . . . , b1,υ . In addition, b1,1, . . . , b1,υ are linearly indepen-
dent. We have β1 = βυ+1, . . . , βυ = β2υ . Therefore, (21) can
be rewritten as

υ∑
j=1

⊕βj(bi1,j ⊕ bi2,j) = o. (23)

According to Lemma 3, the matrix [bi1,1 ⊕ bi2,1, . . . , bi1,υ ⊕
bi2,υ] is one of G2,1, . . . ,G2,υ , which means that bi1,1 ⊕
bi2,1, . . . , bi1,υ ⊕ bi2,υ are linearly independent. Therefore, we
have β1 = · · · = βυ = 0, and the binary columns in (21) are
linearly independent.

We can then conclude that all the columns in the matrix
[Gi1 ,Gi2 ] are linearly independent, where i1 �= i2, and i1, i2 =
1, . . . , 2υ + 1. This is equivalent to stating that the matrix
[Gi1 ,Gi2 ] is full rank. Note that the columns in the matrix
Ĥk are linearly independent and from the linear combina-
tions of the columns of Gk. Therefore, all the columns in
the matrix [Ĥi1 , Ĥi2 ] are linearly independent, i1 �= i2, and
i1, i2 = 1, . . . , 2υ + 1. This concludes the proof. �

APPENDIX F
PROOF OF THEOREM 3

Suppose that Gk = [bk,1, . . . , bk,υ]2υ×υ , k = 1, . . . , N +
2υ − 1, where bk,j , j = 1, . . . , υ, is the jth column in Gk.
According to Algorithm 3, Gk, k = 1, . . . , N , are constructed
so that all the columns in the matrix [G1,G2, . . . ,GN ] are
linearly independent. Then, we focus on the matrices GN+1,
GN+2, . . . ,GN+2υ+1. Randomly choosing N matrices from
GN+1,GN+2, . . . ,GN+2υ+1, we obtain Gi1 ,Gi2 , . . . ,GiN

,
where i1 �= i2 �= · · · �= iN , and i1, i2, . . . , iN ∈ {N +
1, . . . , N + 2υ − 1}. We will prove that all the columns
in the matrix [Gi1 ,Gi2 , . . . ,GiN

] are linearly independent.
For n = 1, . . . , N , we have

Gin
= G1 ⊕

N∑
η=2

⊕Gη,(in−N−1)(η−1) mod(2υ−1). (24)

According to Lemma 2, all the columns in the matrix
Gη,(in−N−1)(η−1)mod(2υ−1) in (24) are linearly independent,
and then all the columns in the matrix Gin

, i.e., bin,1,
. . . , bin,υ, are linearly independent. Then, we consider the
vectors bi1,j , . . . , biN ,j , where j ∈ {1, . . . , υ}. Based on (24),
we have

bin,j = b1,j ⊕
N∑

η=2

⊕bη,(in−N−1)(η−1) mod(2υ−1),j (25)

where bη,(in−N−1)(η−1)mod(2υ−1),j is the jth column of
Gη,(in−N1)(η−1)mod(2υ−1).

To prove that all the columns in the matrix
[Gi1 ,Gi2 , . . . ,GiN

] are linearly independent, we let

υ∑
j=1

⊕
N∑

n=1

⊕βn,jbin,j = o (26)

where each coefficient βn,j is a binary number. Plugging (25)
into (26), we have⎛⎝ υ∑

j=1

⊕
N∑

n=1

⊕βn,jb1,j

⎞⎠
⊕

⎛⎝ υ∑
j=1

⊕
N∑

n=1

⊕βn,jb2,(in−N−1)mod(2υ−1),j

⎞⎠⊕· · ·

⊕

⎛⎝ υ∑
j=1

⊕
N∑

n=1

⊕βn,jbN,(in−N−1)(N−1)mod(2υ−1),j

⎞⎠=o. (27)

Since the columns in the matrix [G1,G2, . . . ,GN ] are lin-
early independent, b1,j , b2,j , . . . , bN,j are linearly independent.
Therefore, from (27), we can obtain the equation group as

υ∑
j=1

⊕
N∑

n=1

⊕βn,jb1,j = o

υ∑
j=1

⊕
N∑

n=1

⊕βn,jb2,(in−N−1) mod(2υ−1),j = o

...
υ∑

j=1

⊕
N∑

n=1

⊕βn,jbN,(in−N−1)(N−1) mod(2υ−1),j = o. (28)

From (28), we obtain
∑N

n=1 ⊕βn,j = 0, and thus, we have
βN,j =

∑N−1
n=1 ⊕βn,j . We rewrite (26) as

N−1∑
n=1

⊕
υ∑

j=1

⊕βn,j(bin,j ⊕ biN ,j) = o. (29)

Furthermore, the subscript of the vectors (i1 − N − 1)(n −
1)mod(2υ − 1) indicates that the vectors[

bT
1,j , b

T
2,(i1−N−1)mod(2υ−1),j , · · ·

bT
N,(i1−N−1)(N−1)mod(2υ−1),j

]T

...[
bT
1,j , b

T
2,(iN−N−1)mod(2υ−1),j · · ·

bT
N,(iN−N−1)(N−1)mod(2υ−1),j

]T

are linearly independent. Therefore, we get according to
Lemma 3 that columns bin,j ⊕ biN ,j are linearly indepen-
dent for n = 1, . . . , N − 1 and j = 1, . . . , υ. Therefore, we
have the coefficient βn,j = 0 for n = 1, . . . , N − 1 and j =
1, . . . , υ. Consequently, we have βN,j = 0 for all j. Based
on this, we immediately get that all the columns in the ma-
trix [Gi1 ,Gi2 , . . . ,GiN

] are linearly independent, where i1 �=
i2 �= · · · �= iN , and i1, i2, . . . , iN ∈ {N + 1, . . . , N + 2υ −
1}. In addition, note that all the columns in the matrix
[G1,G2, . . . ,GN ] are linearly independent. Then, we obtain
that all the columns in [Gj1 ,Gj2 , . . . ,GjN

] are linearly in-
dependent, where j1 �= j2 �= · · · �= jN , and j1, j2, . . . , jN ∈
{1, . . . , N + 2υ − 1}. This concludes the proof. �
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