Pathway to Spectrum
Intelligent Radio




Industrial 4.0

Consumers have gone wireless - factories are just starting
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Smart Factory

University of Sydney



Spectrum

Results
Winning bidder Spectrum sold
10 MHz
6 o 738 - 748 MHz paired with
o 793 - 803 MHz
5 MHz
Vodafone Hutchinson Australia (VHA) ® 733 MHz - 738 MHz paired with

® 788 MHz - 793 MHz
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‘Winning price

$126 billion

$2859 million

= -
= 8
L -

o
=
8
£
s
[=]
g
T
2
3
=

3
I~
S
.




Spectrum Scarcity

How to manage this massive wireless access under the constraint of limited

spectrum resources?

Deep coverage

To reach challenging locations. Strong Sty
Uttra-low energy e.q. Health/ government/ financia trusted
10+ years of battery life
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1 millon nodes per K
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Spectrum Intelligent Radio

» (S1) Human-oriented classical signal processing’
» (S2) Machine learning (ML)
» (S3) Contextual adaptation (CA)
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1P, Cheng, Z. Chen, M. Ding, Y. Li, and B. Vucetic, “Spectrum intelligent radio: technology,
development and future trends,” IEEE Communications Magazine, vol. 58, no. 1, pp. 12-18, Jan.
2020.
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Stream 1: Human-Oriented Classical Signal Processing

(1/2)

> Spectrum sensing
> Various signal processing methods focus on a single parameter
> Assume a homogeneous spectrum state
» Hard to handle complex RF environments
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Stream 1: Human-Oriented Classical Signal Processing

(2/2)
» Decision Making
» Conventional studies use model-dependent approaches to obtain structured
solutions, which require the knowledge of the parameters in the network.
» The complexity of spectrum environment often makes it impossible to gain enough

knowledge in advance.
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Stream 2:
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Machine Learning

Reasoning

Spectrum
ML

Understanding

Perception




Level 1: Perception

> Involve the autonomous multiple feature identification of signals in an unknown
complicated RF environment?
> Observe network heterogeneity and dynamics from different perspectives.

Data driven clustering

Binary hypothesis test Multiple hypothesis test
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2R. Zhang, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “A learning-based two-stage spectrum
sharing strategy with multiple primary transmit power levels,” IEEE Transactions on Signal
Processing, vol. 67, no. 18, pp. 4899-4914, Sep. 2019.
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Performance of the PT Power Level Identification
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Figure: The probability of correct PT power level prediction in the first stage (F,).
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Vision

» Future networks demand automated extraction of far more features with no or
minimal prior information.

» The physical layer information (spectrum occupancy, transmit power level,
modulation, constellation, and channel coding) and upper layer features
(application types, network topology, and communication protocols) should be
mined under a unified framework.

> Automate the extraction of a multitude of features. This represents a new trend
for RF landscape perception.
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Level 2: RF Environment Understanding

P> To learn the structure of the RF environment in a large-scale complex network,
and establish the ongoing RF activity map3

» Deploy many static SUs at different locations to carry out spectrum sensing
simultaneously

B Sccondary Users

% Cluster Head

é Primary Users

3Y. Xu, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Mobile collaborative spectrum sensing for
heterogeneous networks: A Bayesian machine learning approach,” IEEE Transactions on Signal
Processing, vol. 66, no. 21, pp. 5634-5647, Nov. 2018.
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Proposed Learning Model

> Exploit the mobility nature inherent to most wireless devices to explore the
spectrum footprint across a network
» BP-SHMM

Three SUs’ tracks in CRN
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Prediction of Spectrum Availability

> Prediction of PUs' locations and transmission ranges based on classification results

> Refinement based on previous predictions
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Y=

Input:
Initialize a9 = (22,72, R°); Initial L-M parameter \;
Hyperparameter ¢, &, v;
Output:
The final result, a = (z, Y., R);
: Compute FO = F (22,12, R®) based on initial guess ao;

2: Assuming that (z¥,y* R*) are known, compute
dd; )0z, dd; /0y, dd; /OR for all i;

3: Compute the matrix N = JTJ, Ny = N + Al and the
vector J7d;

4: Compute new Aa = —(N,)~J7d;

5. If ||Aal| /Ry, < € (small tolerance), then terminate the

procedure;

6: Use Aa = {Axz., Ay., AR} to update the parameters
aftl = ok Az, yb ! = yF+ Ay, R = REHAR;

. Compute FF+1 = F(ghtl yk+1 RE+1),

: If FRHL > F or RFF1 <0, update A +— X and return
to Step 4; otherwise increment k, update A — v, and
return to Step 2.
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PUs’ location and Transmission Range Prediction
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Figure: Prediction results for N’ = 2 and N’ = 3, respectively.
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Vision

» Focus on the spectrum heterogeneity

» How to handle the envisioned scenario with fast-changing dynamics and
interference is still an open problem.

University of Sydney
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Level 3: Reasoning for Instantaneous Spectrum Access

» Open question*
» POMDP (Conventional model-based)
> Unknown network dynamics + Channel correlations
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4Z. Yan, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Gaussian process reinforcement learning for
fast opportunistic spectrum access,” IEEE Transactions on Signal Processing, vol. 68, pp.
2613-2628, Apr. 2020.
University of Sydney
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Gaussian Process Reinforcement Learning (GPRL)

> Enable the SU to directly interact with the unknown RF environment

» Incorporate GP with Bayesian inference into RL

> Enable a much more efficient Q-function approximation compared to DRL,
eliminating the need for a large number of training samples
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Experimental Results
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Vision

» GPRL only suit a single-user scenario.
» The multi-user setting is much more challenging.

» Due to interactions among users, it is highly desirable to develop a model-free
distributed multi-user method without coordination or message exchange among
users.

University of Sydney

21



Wireless Signal Strength Prediction
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Prediction Results
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Stream 3: Contextual Adaptation

> Envisioned to feature contextual adaptation, and meet the need for future massive
connectivity with its full intelligence

» Future networks demand automated extraction of far more features with no or
minimal prior information.

» Explainable ML
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Y. Lu, P. Cheng*, Z. Chen, Y. Li, W. H. Mow and B. Vucetic, “Deep Autoencoder Learning for
Relay-Assisted Cooperative Communication Systems,” IEEE Transactions on Communications, vol.
68, no. 9, pp. 5471-5488, Sept. 2020

%Y. Lu, P. Cheng*, Z. Chen, Y. Li, W. H. Mow and B. Vuceti, “Deep Multi-Task Learning for
U%Qe%%%??y‘éﬁey'VOMAf System Design and Principles, IEEE Journal on Selected Areas in ”
Communications, vol. 39, no. 1, pp. 61-78, Jan. 2021.




Standardization

» Ericsson Spectrum Sharing’®

Ericsson Spectrum Sharing

1 |

1msis all it takes

"https:/ /www.rcrwireless.com /20200312 /network-infrastructure/outlook-for-dynamic-spectrum-
sharing
8https: / /www.vodafone.com /perspectives/blog/dynamic-spectrum-sharing

University of Sydney

25



Development Roadmap

» DAPRA ML-based spectrum management?

o
SPECTRUM
COLLABORATION

afamn CHALLENGE

USING Al TO UNLOCK THE TRUE POTENTIAL OF THE RF SPECTRUM
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Wireless Al

» A Data Life Cycle Perspectivel®l!
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D Nguyen, P. Cheng*, M. Ding, et.al, “Enabling Al in Future Wireless Networks: A Data Life
Cycle Perspective,” to appear in IEEE Communications Surveys & Tutorials, Sept. 2020.

1P Cheng, C. Ma, M. Ding, Y. Hu, Y. Li, and B. Vucetic, “Localized small cell caching: A machine
learning approach based on rating data,” IEEE Transactions on Communications, vol. 67, no. 2, pp.

1663-1676, Feb. 2019.
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Wireless Al

» System Perspective!?!3

IV Ssajalim

Wireless Al

12y Xu, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Task Offloading for Large-Scale Asynchronous
Mobile Edge Computing: An Index Policy Approach,” to appear in IEEE Transactions on Signal
Processing, Dec. 2020.

137 Yan, P. Cheng*, Z. Chen, Y. Li, and B. Vucetic, “Two-Dimensional task offloading for mobile

computing networks: An imitation learning framework,” submitted to IEEE/ACM Transactions on
Networking, Dec. 2020.
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Wireless Al

> Application Perspective
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